首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For detection of hypoxic tumor tissue, all radiotracers synthesized until now, are based on the concept that cellular uptake is being controlled by diffusion. As a new approach, we chose the concept to have the tracer hypothetically transported into the cells by well known carrier systems like the amino acid transporters. For this purpose, radiosynthesis of O-[2-[18F]fluoro-3-(2-nitro-1H-imidazole-1yl)propyl]tyrosine ([18F]FNT]) was carried out from methyl 2-(benzyloxycarbonyl)-3-(4-3-(2-nitro-1H-imidazol-1-yl)-2-(tosyloxy)propoxy) phenyl)propanoate via no-carrier-added nucleophilic aliphatic substitution. After labelling, 81 ± 0.9% of labelled intermediate i.e. methyl 2-(benzyloxycarbonyl)-3-(4-(2-[18F]fluoro-3-(2-nitro-1H-imidazole-1-yl)propoxy) phenyl)propanoate was obtained at 140 °C. At the end of radiosynthesis, [18F]FNT was obtained in an overall radiochemical yield of 40 ± 0.9% (not decay corrected) within 90 min in a radiochemical purity of >98% in a formulation ready for application in the clinical studies for PET imaging of hypoxia.  相似文献   

2.
The purpose of this study was to investigate in vivo biodistribution and potential target tissues of pancreatic-derived factor (PANDER, FAM3B) using 18F-labeled PANDER positron emission tomography (PET) imaging. 18F-Labeled PANDER ([18F]FB-PANDER) was prepared by reaction of PANDER and N-succinimidyl-4-[18F]fluorobenzoate ([18F]SFB). The uncorrected radiochemical yield of [18F]FB-PANDER was 15.2 ± 3.4 % (n = 4) based on [18F]SFB within the total synthesis time of 30 min. In vivo biodistribution of [18F]FB-PANDER in nomal mice and PET imaging demonstrated high uptake of the radiotracer in urinary bladder, kidneys and gall bladder, and fast clearance from kidneys and gall bladder. Also, moderate uptake in blood, liver, pancreas, small intestine and bone, low uptake in brain and muscle, and almost no uptake in S180 fibrosarcoma tissue were observed. The results indicated that the major excretion route of PANDER was through renal-urinary bladder and biliary system, and no obvious binding targets of PANDER in the main organs and S180 fibrosarcoma tissue were found.  相似文献   

3.
Jan Marik 《Tetrahedron letters》2006,47(37):6681-6684
CuI catalyzed 1,3-dipolar cycloaddition ‘click chemistry’ was used to prepare 18F-radiolabeled peptides. Three ω-[18F]fluoroalkynes were prepared in yields ranging from 36% to 81%. Conjugation of ω-[18F]fluoroalkynes to various peptides decorated with 3-azidopropionic acid via CuI mediated 1,3-dipolar cycloaddition yielded the desired 18F-labeled products in 10 min with yields of 54-99% and excellent radiochemical purity (81-99%). The total synthesis time was 30 min from the end of bombardment.  相似文献   

4.
The synthesis of the three 18F-labeled 2-nitroimidazoyl oximes is described to be used as possible hypoxia tumor imaging agents. The title oximes were successfully synthesized in a four step sequence, characterized, and finally radiolabeled. Under optimized labeling conditions, the radiochemical yields of the three markers were in the range of 69–80%.  相似文献   

5.
O-(2-[18F]fluoroethyl)-L-tyrosine ([18F]FET), a fluorine-18 labeled analogue of tyrosine, has been synthesized and biologically evaluated in tumor-bearing mice. The whole synthesis procedure is completed within 50 min. The radiochemical yield is about 40% (no decay corrected) and radiochemical purity more than 97% after simplified solid phase extraction. [18F]FET shows rapid, high uptake and long retention in the tumor as well as low uptake in the brain. The ratios of tumor-to-muscle (T/M) and tumor-to-blood (T/B) of [18F]FET are similar to those of [18F]FDG, but the ratios of tumor-to-brain (T/Br) are 2–3 times higher than that of [18F]FDG. Autoradiography of [18F]FET demonstrates a remarkable accumulation in melanoma with high contrast. It appears to be a probable competitive candidate for melanoma imaging with PET. Supported by the Knowledge Innovation Project of Chinese Academy of Sciences (No. KJCX1-SW-08) and the National Natural Science Foundation of China (Grant No. 30371634)  相似文献   

6.
Summary Fluorodehalogenation reactions were used to prepare 6-[18F]fluoroveratraldehyde. The synthesis of 6-[18F]fluoroveratraldehyde is the first step in the multi-step synthesis of the clinically important tracer 6-[18F]fluoro-L-dopa. In the literature yields ranging from 20-50% are reported when using nitro and trimethylammoniumtriflate precursors. However, no data exist concerning the use of different leaving groups such as halogens. Therefore, 6-bromo, 6-chloro and 6-fluoroveratraldehyde were tested in the nucleophilic aromatic substitution by [18F]fluoride. In DMF, 6-[18F]fluoroveratraldehyde was obtained with radiochemical yields of (57±1.0)% and (66±3.6)% in 20 minutes at 160 °C using 50 mg/ml bromo and chloro precursor, respectively. The fluoro precursor gave a radiochemical yield of (87±0.8)% at 140 °C. Temperature, solvent and concentration strongly affected the 18F-labeling. Among the halogens the ability as a leaving group was F>>Cl>Br. The halogenated veratraldehydes provide a good alternative for the synthesis of ca and nca 6-[18F]fluoroveratraldehyde, as the first step of the synthesis for [18F]FDOPA since they are inexpensive, commercially available, stable, sustain hard conditions in the labeling step, and give yields better or equal to other precursors previously reported.  相似文献   

7.
[67Ga]labeled tetraphenyl porphyrin ([67Ga]-TPP) was prepared using freshly prepared [67Ga]GaCl3 and tetraphenyl porphyrin (TPPH2) for 30–60 min at 25 °C (radiochemical purity: >97 ± 1% ITLC, >98 ± 0.5% HPLC, specific activity: 13–14 GBq/mmol). Stability of the complex was checked in final formulation and human serum for 24 h. The partition coefficient was calculated for the compound (log P 1.89). The biodistribution of the labeled compound in vital organs of wild-type rats was studied using scarification studies and SPECT imaging up to 24 h. A detailed comparative pharmacokinetic study performed for 67Ga cation and [67Ga]-TPP. The complex is mostly washed out from the circulation through kidneys and can be an interesting tumor imaging/targeting agent due to low liver uptake and rapid excretion through the urinary tract.  相似文献   

8.
The aim of this study was to synthesize the optically pure [18F]FPA, and to investigate the diagnostic value of different isomers. Semi-automated radiosynthesis of R-[18F]FPA or S-[18F]FPA was respectively from the chiral precursor (S)- or (R)-ethyl 2-(((trifluoromethyl)sulfonyl)oxy)propanoate via a two-step reaction and performed on the commercial FDG synthesizer. The improved radiochemical yields of R-[18F]FPA and S-[18F]FPA were 3040% (decay-uncorrected, n = 10) in 35 min. There was no significant difference on the biodistribution of two enantiomers in normal mice (P > 0.05), but positron emission tomography imaging demonstrated that R-[18F]FPA was more suitable for PC3 tumor imaging than S-[18F]FPA and [18F]FDG.  相似文献   

9.
In homoaromatic systems, isotopic exchange (18F/19F) was previously (J Label Compd Radiopharm 18(12):1721–1730 [2], J Chem Soc Perkin Trans 1(3):295–298 [3]) proven to be advantageous, yet in general specific activity is thought to be low. For heteroaromatic systems, in particular, very few examples are published regarding the 18F-labelling of 2-substituted pyridines (J Label Compd Radiopharm 42:975–985 [9]). Therefore, in 2-fluoropyridines, we decided to study the 18F labelling by isotopic exchange (18F/19F). The radiochemical yield for 2-fluoropyridine was 90 ± 2%. Even if 2-fluoropyridine was substituted by an electron-donating group such as a methyl or a methoxy group, radiochemical yields were 80 ± 1 and 78 ± 1%, respectively. Although in benzenes, these substituents are known to decrease nucleophilic substitutions by 18F-Fluoride significantly. Moreover, by choosing appropriate concentrations of 2-fluoropyridines, reasonably high specific activities up to 10 GBq/μmol were obtained.  相似文献   

10.
(1) Background: [18F]Flumazenil 1 ([18F]FMZ) is an established positron emission tomography (PET) radiotracer for the imaging of the gamma-aminobutyric acid (GABA) receptor subtype, GABAA in the brain. The production of [18F]FMZ 1 for its clinical use has proven to be challenging, requiring harsh radiochemical conditions, while affording low radiochemical yields. Fully characterized, new methods for the improved production of [18F]FMZ 1 are needed. (2) Methods: We investigate the use of late-stage copper-mediated radiofluorination of aryl stannanes to improve the production of [18F]FMZ 1 that is suitable for clinical use. Mass spectrometry was used to identify the chemical by-products that were produced under the reaction conditions. (3) Results: The radiosynthesis of [18F]FMZ 1 was fully automated using the iPhase FlexLab radiochemistry module, affording a 22.2 ± 2.7% (n = 5) decay-corrected yield after 80 min. [18F]FMZ 1 was obtained with a high radiochemical purity (>98%) and molar activity (247.9 ± 25.9 GBq/µmol). (4) Conclusions: The copper-mediated radiofluorination of the stannyl precursor is an effective strategy for the production of clinically suitable [18F]FMZ 1.  相似文献   

11.
[18F]-3′-deoxy-3′-fluorothymidine ([18F]FLT) is an established positron emission tomograph (PET)—radiopharmaceutical to study cell-proliferation rate in tumors. Very low practical yield, uncertain and time-consuming high performance liquid chromatography (HPLC) purification, are the main obstacles for the routine use of [18F]FLT in clinical PET. To obviate these difficulties, we have developed a fully automated radiosynthesis procedure for [18F]FLT using 5′-O-(4,4′-dimethoxytriphenylmethyl)-2,3′-anhydro-thymidine (DMTThy) and simplified single neutral alumina column purification. The [18F]FLT yield was 8.48 ± 0.93% (n = 5) (without radioactive decay correction) in a synthesis time of 68 ± 3 min. The radiochemical purity was greater than 95% as confirmed by analytical HPLC using reference standard FLT and also free of non-radioactive impurity. Soluble aluminum in the final product was much below the permissible limits. Di-methyl sulfoxide (DMSO), the reaction medium, could be detected in the final product in trace amounts, well below the permissible levels. The synthesized [18F]FLT was sterile and bacterial endotoxin free by appropriate tests. PET imaging study in normal rabbits showed distinct localization of [18F]FLT in organs having rapid cell division rate like bone marrow, guts and snout and the excretion was through the renal route. There were no significant uptakes in bone and brain. The former finding confirms the in vivo stability of the [18F]FLT. This simplified radiosynthesis procedure can easily be adapted in any commercial or indigenous [18F]FDG synthesis module for routine [18F]FLT synthesis without the need of additional automation for HPLC purification.  相似文献   

12.
Positron emission tomography (PET) imaging of activated T-cells with N-(4-[18F]fluorobenzoyl)-interleukin-2 ([18F]FB-IL-2) may be a promising tool for patient management to aid in the assessment of clinical responses to immune therapeutics. Unfortunately, existing radiosynthetic methods are very low yielding due to complex and time-consuming chemical processes. Herein, we report an improved method for the synthesis of [18F]FB-IL-2, which reduces synthesis time and improves radiochemical yield. With this optimized approach, [18F]FB-IL-2 was prepared with a non-decay-corrected radiochemical yield of 3.8 ± 0.7% from [18F]fluoride, 3.8 times higher than previously reported methods. In vitro experiments showed that the radiotracer was stable with good radiochemical purity (>95%), confirmed its identity and showed preferential binding to activated mouse peripheral blood mononuclear cells. Dynamic PET imaging and ex vivo biodistribution studies in naïve Balb/c mice showed organ distribution and kinetics comparable to earlier published data on [18F]FB-IL-2. Significant improvements in the radiochemical manufacture of [18F]FB-IL-2 facilitates access to this promising PET imaging radiopharmaceutical, which may, in turn, provide useful insights into different tumour phenotypes and a greater understanding of the cellular nature and differential immune microenvironments that are critical to understand and develop new treatments for cancers.  相似文献   

13.

The goal of this work was to present two high-performance liquid chromatography (HPLC) method that could be applied for the determination of the total radioactive purity of 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) and O-(2-[18F]fluoroethyl)-L-tyrosine ([18F]FET). The separation of [18F]fluoride ions, [18F]FET and [18F]FET intermediate was accomplished on LiChrosper RP-18, 250?×?4 mm, 5 µm (Merck) analytical column. For mobile phase 10 mM potassium dihydrogen phosphate buffer at pH7 (A) and acetonitrile (B) was used: 0–2 min: 15% B; 2–12 min: 85% B; 12–15 min: 15% B, respectively. Analysis of [18F]FDG was performed using LiChrosper 100 NH2, 250?×?4.5 mm, 5 µm (Merck) analytical column. The initial mobile phase composition was 10 mM KH2PO4 buffer (pH7) and acetonitrile (15:85, v/v) and the acetonitrile ratio was decreased to 15% at 2 min after the sample injection and held for 5 min. Complete elution of [18F]fluoride ions from stationary phases could be achieved by adding 10 mg/mL K[19F]F to radioactive samples in a ratio 1:1 during the sample preparation. Recovery of [18F]fluoride ions ranged from 99.5 to 100.6%. The validation of the developed methods showed good results for linearity (r2?=?0.9981–0.9996), specificity (RS?=?3.7–10.2), repeatability (%Area RSD%?=?1.2–4.3%) and limit of quantitation (LOQ?=?1.6–4.5 kBq). During the cross-validation similar radiochemical purity values were obtained by the novel HPLC methods and thin layer chromatography performed according to the recommendations of the Ph. Eur. monographs.

  相似文献   

14.
In this paper, N-(2-[18F]fluoropropionyl)-β-glutamic acid 8 ([18F]FP-β-Glu), a new N-substituted 18F-labeled amino acid tracer, was synthesized from the precursor 4 (diethyl 3-(2-bromopropanamido)pentanedioate) via a two-step reaction on the modified FDG synthesizer. The radiochemical yield was 20 ± 5% (n = 10, decay-corrected) from [18F]fluoride within 40 min, the radiochemical purity was 98%. Moreover, microPET studies showed that [18F]FP-β-Glu 8 exhibited rapid tumor uptake and good tumor-to-lung ratio in SPC-A-1 tumor-bearing mice. A high accumulation of radioactivity was found in the kidneys and bladder, which suggested that the tracer was mainly eliminated through the urinary system.  相似文献   

15.
《中国化学快报》2022,33(7):3543-3548
Racemic [18F]FBFP ([18F]1) proved to be a potent σ1 receptor radiotracer with superior imaging properties. The pure enantiomers of unlabeled compounds (S)- and (R)-1 and the corresponding iodonium ylide precursors were synthesized and characterized. The two enantiomers (S)-1 and (R)-1 exhibited comparable high affinity for σ1 receptors and selectivity over σ2 receptors. The Ca2+ fluorescence assay indicated that (R)-1 behaved as an antagonist and (S)-1 as an agonist for σ1 receptors. The 18F-labeled enantiomers (S)- and (R)-[18F]1 were obtained in >99% enantiomeric purity from the corresponding enantiopure iodonium ylide precursors with radiochemical yield of 24.4% ± 2.6% and molar activity of 86–214 GBq/µmol. In ICR mice both (S)- and (R)-[18F]1 displayed comparable high brain uptake, brain-to-blood ratio, in vivo stability and binding specificity in the brain and peripheral organs. In micro-positron emission tomography (PET) imaging studies in rats, (S)-[18F]1 exhibited faster clearance from the brain than (R)-[18F]1, indicating different brain kinetics of the two enantiomers. Both (S)- and (R)-[18F]1 warrant further evaluation in primates to translate a single enantiomer with more suitable kinetics for imaging the σ1 receptors in humans.  相似文献   

16.
The preparation of 10-(2-[18F]fluoroethoxy)-20(S)-camptothecin, a potential positron emission tomography tracer for the imaging of topoisomerase I in cancers, is described. 10-(2-[18F]Fluoroethoxy)-20(S)-camptothecin was synthesized by the [18F]fluoroalkylation of the corresponding hydroxy precursor molecule with 2-[18F]fluoroethyl bromide ([18F]FEtBr) in dimethylsulfoxide (DMSO) at 55 °C for 20 min; this was followed by purification using high performance liquid chromatography (HPLC) with a total preparation time of 60 min. The overall radiochemical yield was approximately 5.4–12 % (uncorrected), and the radiochemical purity was above 96 %.  相似文献   

17.
Background: The somatostatin receptors 1–5 are overexpressed on neuroendocrine neoplasms and, as such, represent a favorable target for molecular imaging. This study investigates the potential of [18F]AlF-NOTA-[1-Nal3]-Octreotide and compares it in vivo to DOTA- and NOTA-[1-Nal3]-Octreotide radiolabeled with gallium-68. Methods: DOTA- and NOTA-NOC were radiolabeled with gallium-68 and NOTA-NOC with [18F]AlF. Biodistributions of the three radioligands were evaluated in AR42J xenografted mice at 1 h p.i and for [18F]AlF at 3 h p.i. Preclinical PET/CT was applied to confirm the general uptake pattern. Results: Gallium-68 was incorporated into DOTA- and NOTA-NOC in yields and radiochemical purities greater than 96.5%. NOTA-NOC was radiolabeled with [18F]AlF in yields of 38 ± 8% and radiochemical purity above 99% after purification. The biodistribution in tumor-bearing mice showed a high uptake in tumors of 26.4 ± 10.8 %ID/g for [68Ga]Ga-DOTA-NOC and 25.7 ± 5.8 %ID/g for [68Ga]Ga-NOTA-NOC. Additionally, [18F]AlF-NOTA-NOC exhibited a tumor uptake of 37.3 ± 10.5 %ID/g for [18F]AlF-NOTA-NOC, which further increased to 42.1 ± 5.3 %ID/g at 3 h p.i. Conclusions: The high tumor uptake of all radioligands was observed. However, [18F]AlF-NOTA-NOC surpassed the other clinically well-established radiotracers in vivo, especially at 3 h p.i. The tumor-to-blood and -liver ratios increased significantly over three hours for [18F]AlF-NOTA-NOC, making it possible to detect liver metastases. Therefore, [18F]AlF demonstrates promise as a surrogate pseudo-radiometal to gallium-68.  相似文献   

18.
(S)-4-Chloro-2-fluorophenylalanine and (S)-(α-methy)-4-chloro-2-fluorophenylalanine were synthesized and labeled with no carrier added (n.c.a.) fluorine-18 through a radiochemical synthesis relying on the highly enantioselective reaction between 4-chloro-2-[18F]fluorobenzyl iodide and the lithium enolate of (2S)-1-(tert-butyloxycarbonyl)-2-(tert-butyl)-3-methyl-1,3-imidazolidine-4-one for (S)-4-chloro-2-[18F]fluorophenylalanine and (2S,5S)-1-(tert-butyloxycarbonyl)-2-(tert-butyl)-3,5-dimethyl-1,3-imidazolidine-4-one for (S)-(α-methyl) -4-chloro-2-[18F] fluorophenylalanine. Quantities of about 20–25 mCi were obtained at the end of sy nthesi s, ready for injection after hydrolysis and high performance liquid chromatography (HPLC) purification, with a radiochemical yield of 17%–20% corrected to the end of bombardment after a total synthesis time of 90–105 min from [18F] fluoride. The enantiomeric excesses were shown to be 97% or more for both molecules without chiral separation and the radiochemical and chemical purities were 98% or better.  相似文献   

19.
In this study, we synthesized and characterized N-[11C]methyl-dopamine ([11C]MDA) for cardiac sympathetic nerve imaging. [11C]MDA was synthesized by direct N-methylation of dopamine with [11C]methyl iodide and purified by semi-preparation reverse high pressure liquid chromatography (HPLC). The total synthesis time was 45 min including HPLC purification. The radiochemical yields of [11C]MDA was 20 ± 3 %, without decay correction. The radiochemical purity was >98 % and the specific activity was about 50 GBq/mmol. The biological properties of [11C]MDA were evaluated by biodistribution study in normal mice. PET imaging was performed in healthy Chinese mini-swines. Biodistribution study showed that [11C]MDA had high myocardium uptake. PET/CT imaging showed [11C]MDA had clear and symmetrical myocardium uptake, which was blocked obviously by injecting imipramine hydrochloride. [11C]MDA would be a promising candidate of radiotracer for cardiac sympathetic nervous system imaging.  相似文献   

20.
Due to the biological complexity of the N‐methyl‐d ‐aspartate receptor (NMDAR ), the development of a positron emission tomography radiotracer for the imaging of NMDAR has met with limited success. Recent studies have established the presence of GluN2A subunit of the NMDAR in the heart and its role in the regulation of intracellular calcium levels. In our efforts to develop an imaging agent for the GluN2A subunit, we designed three new compounds based on a quinoxaline scaffold. The synthesis of the analogues was based on a two‐step Kabachnik–Fields reaction in sequence with Suzuki cross‐coupling and acid hydrolysis. They exhibited comparable high binding affinity values below 5 nm . A two‐step radiolabeling procedure was successfully developed for the synthesis of [18F] 1 . [18F] 1 was obtained in a modest overall radiochemical yield of 5.5 ± 4.2%, a good specific radioactivity of 254 ± 158 GBq/μmol, and a radiochemical purity > 99%. While compounds 2 and 3 showed comparable binding affinity towards NMDAR , sluggish radiolabeling, prevented their further evaluation. For [18F] 1 , in vitro autoradiography on rat heart slices demonstrated heterogeneous but unspecific accumulation, whereas for the brain a high in vitro specificity towards NMDAR , could be demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号