首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Physical situations where a viscous boundary layer breaks down and interacts strongly with an effectively inviscid external flow are common place. For large Reynolds numbers, viscous effects are normally confined to thin boundary layers on all solid surfaces for the majority of any observation time. In most practical situations, exposure of such layers to an adverse pressure gradient is inevitable and in this circumstance, a sequence of events commences near the wall that culminates in an eruption and a strong viscous-inviscid interaction with the external flow. The events leading up to eruption are known as the Van Dommelen–Shen process and the eruption itself is referred to as boundary-layer separation; here the term ‘separation’ denotes the first process of interaction between a hitherto thin boundary layer and the external flow. The event is sufficiently complicated that extraordinary measures are needed to compute its evolution. In most situations, the onset of separation is subtle and hard to detect and thus development of rational control procedures is a challenging task. Here recent calculations of unsteady separation events are discussed for two- and three-dimensional flows. The phenomena involved are generic but leading-edge separation on airfoils and rotorcraft blades is emphasized. Recent studies on various control mechanisms are described, which are found to have the effect of slowing down and/or weakening the separation process. For some control processes, it has proved possible to eliminate separation entirely.  相似文献   

2.
3.
A Computational Fluid Dynamics (CFD) model is presented for the uniform viscous two dimensional flow past an oscillating cylinder at low Reynolds number. Numerical simulations are made to study the effect of differing forced induced oscillation mechanisms with a large range of cylinder forcing frequencies. In the first case sinusoidal velocity slip boundary conditions are adopted for the cylinder surface to simulate cylinder oscillation. The implication suggests that no modification or additional term need to be added to the Navier-Stokes equations. In the second case this time extra body force terms which are assumed to account for velocity effects due to cylinder movement are included in the Navier-Stokes equations with the imposition of same boundary conditions. Drag and lift coefficients are extracted from present numerical results and other detailed computations of these coefficients are made at a Reynolds number of 80 and an amplitude-to diameter ratio 0.14. The results are found to be in agreement with each other at low force driving frequencies below and near lock-in. However, differences are found at higher frequencies above lock-in. Agreement are also found with experimental results at some frequency ranges.  相似文献   

4.
A plane incompressible fluid flow past a plate mounted in a homogeneous stream at a small angle of attack * is investigated on the basis of an asymptotic analysis of the Navier-Stokes equations at high Reynolds numbers (Re). In the neighborhood of the leading edge the flow structure is studied in detail. It is found that separation is initiated in a small vicinity of the leading edge at and the length of the slow reverse stream zone is of the order O(1) at . The nonuniqueness of the solution is detected at and the hysteresis phenomenon is explained. It is shown that under certain conditions the solutions obtained also hold for flows past bodies of small thickness.  相似文献   

5.
The question of non-locality is considered for a model supersonic flow at high Reynolds number in a channel formed between two parallel plates of different length, using the channel length as a control parameter. Examples are given of time-periodic stable and unstable flows forced by a disturbance positioned in the middle of the channel. It is shown that in certain parameter ranges the flow in a channel of ever increasing length is not approximated by the solutions obtained for infinitely long channels. This is interpreted in terms of a feedback interaction between the flow near the channel ends and the disturbance source. Feedback is shown to result from a slow upstream decay of disturbances coupled with a relatively fast downstream growth of instability waves. For a free (non-forced) flow, the feedback is found to lead to a form of global or resonant instability. Examples of growth rate calculations for the feedback modes are given.  相似文献   

6.
The flow over a circular cylinder at Reynolds number 2 × 104 was predicted numerically using the technique of large-eddy simulation (LES). Both incompressible and compressible flow formulations were used. The present results obtained at a low-Mach number (M?=?0.2) revealed significant inaccuracies like spurious oscillations of the compressible flow solution. A detailed investigation of such phenomena was carried out. It was found that application of blended central-difference or linear-upwind schemes could damp artificial waves significantly. However, this type of schemes has a too dissipative nature compared to pure central-differences. The incompressible flow results were found to be consistent with the existing numerical studies as well as with the experimental data. Basic flow features and flow mechanics were found to be in good agreement with existing experimental data and consistent with previously obtained LES. Special emphasis was put on the spectral analysis. Here, the classical Fourier transform as well as the continuous wavelet transform were applied. Based on the latter, the separated shear-layer instability was precisely clarified. It was found that the Reynolds number dependency between vortex shedding and shear-layer instabilities had a power law relation with n?=?0.5.  相似文献   

7.
Transport in Porous Media - A concise and accurate prediction method is required for membrane permeability in chemical engineering and biological fields. As a preliminary study on this topic, we...  相似文献   

8.
Supersonic perfect-gas flow past a sphere and a cylinder at a constant surface temperature is investigated on the basis of a numerical solution of the Navier-Stokes equations. The Re-dependence of the Nusselt number and the recovery coefficient is calculated for the Reynolds numbers ranging from 1 to 1000 and Mach numbers 3 (cylinder) and 5 (sphere) and compared with the experimental data. The influence of slip and no-slip conditions imposed on the body surface on the heat transfer parameters and the base flow is analyzed.  相似文献   

9.
Measurements of the drag caused by turbulent boundary layer mean wall shear stress on cylinders at small angles of attack and high length Reynolds numbers (8×106<ReL<6×107) are presented. The use of a full-scale, high-speed towing tank enabled the development of turbulent boundary layers on cylinders made of stainless steel, aluminum, titanium, and polyvinyl chloride. The diameter of all cylinders in this experiment was 12.7 mm; two cylinder lengths, 3.05 m and 6.10 m, were used, corresponding to aspect ratio values L/a=480 and 960, respectively. Materials of various densities were towed at critical angles, resulting in linear cylinder geometry for tow speeds ranging from 2.6 m/s to 20.7 m/s and angles between 0° and 12°. Towing angles were measured with digital photography, and streamwise drag was measured with a strut-mounted load cell at the tow point. The measured tangential drag was very sensitive to small increases in angle at all tow speeds. A momentum thickness length scale is proposed to scale the tangential drag coefficient. The effects of the cross-flow resulting from the small angles of tow have a significant effect on the tangential drag coefficient values. A scaling for the orthogonal force on the cylinders was determined and provides a correction to published normal drag coefficient values for pure cross-flow. The presence of the axial turbulent boundary layer has a significant effect on these orthogonal forces.  相似文献   

10.
The flow over a circular cylinder at Reynolds number 3900 and Mach number 0.2 was predicted numerically using the technique of large-eddy simulation. The computations were carried out with an O-type curvilinear grid of size of 300 × 300 × 64. The numerical simulations were performed using a second-order finite-volume method with central-difference schemes for the approximation of convective terms. A conventional Smagorinsky and a dynamic k-equation eddy viscosity sub-grid scale models were applied. The integration time interval for data sampling was extended up to 150 vortex shedding periods for the purpose of obtaining a fully converged mean flow field. The present numerical results were found to be in good agreement with existing experimental data and previously obtained large-eddy simulation results. This gives an indication on the adequacy and accuracy of the selected large-eddy simulation technique implemented in the OpenFOAM toolbox.  相似文献   

11.
Three-dimensional particle tracking velocimetry (3D-PTV) measurements have provided accurate Eulerian and Lagrangian high-order statistics of velocity and acceleration fluctuations and correlations at Reynolds number 10,300, based on the bulk velocity and the pipe diameter. Spatial resolution required in the analysis method and number of correlation samples required for Lagrangian and Eulerian statistics have been quantified. Flaws in a previously published analyzing method have been overcome. Furthermore, new experimental solutions are presented to facilitate similar measurements at Reynolds numbers of 15,000 and beyond. The Lagrangian velocity correction functions are used to determine the Kolmogorov constant.  相似文献   

12.
This work presents results of flow around a heated circular cylinder in mixed convection regime and demonstrates that Prandtl number and angle of attack of the incoming flow have a large influence on the characterisation of the flow transition from 2-D to 3-D. Previous studies show that heat transfer can enhance the formation of large 3-D structures in the wake of the cylinder for Reynolds numbers between 75 and 127 and a Richardson number larger than 0.35. This transitional mode is generally identified as “mode E”. In this work, we compare the results for water-based flow (large Prandtl number) with the ones for air-based flows (low Prandtl number). The comparison is carried out at two Reynolds numbers (100 and 150) and at a fixed Richardson number of 1. It shows that at the low Reynolds number of 100 the low Prandtl number flow does not enter into transition. This is caused by the impairment of the baroclinic vorticity production provoked by the spanwise temperature gradient. At low Prandtl number temperature gradients are less steep. For an air-based flow at Reynolds number 150, several Richardson numbers have been simulated. In this situation, the flow enters into transition and exhibits the characteristics of “mode E”, with the development of Λ-shaped structures in the near wake and mushroom-like structures in the far wake. It is also observed that the transition is delayed at Richardson number of 0.5. Simulations are also carried to investigate the effect of the angle of attack on the incoming flow on the development of large coherent structures. When the angle of attack is positive, the development of the wake tends to return to a more bi-dimensional configuration, where large scale coherent structures are impaired. In contrast, when the angle of attack is negative, large scale tri-dimensional structures dominate the flow in the wake, but with a very chaotic behaviour and the regular pattern of zero angle of attack is destroyed. The different behaviour of the flow with the variation of the angle of attack is also related to the baroclinic vorticity production, where new terms appear in the equations, leading to a positive effect of the vorticity production in case of a negative angle of attack and the opposite for a positive angle of attack.  相似文献   

13.
In this paper we report on (two-component) LDV experiments in a fully developed turbulent pipe flow with a drag-reducing polymer (partially hydrolyzed polyacrylamide) dissolved in water. The Reynolds number based on the mean velocity, the pipe diameter and the local viscosity at the wall is approximately 10000. We have used polymer solutions with three different concentrations which have been chosen such that maximum drag reduction occurs. The amount of drag reduction found is 60–70%. Our experimental results are compared with results obtained with water and with a very dilute solution which exhibits only a small amount of drag reduction. We have focused on the observation of turbulence statistics (mean velocities and turbulence intensities) and on the various contributions to the total shear stress. The latter consists of a turbulent, a solvent (viscous) and a polymeric part. The polymers are found to contribute significantly to the total stress. With respect to the mean velocity profile we find a thickening of the buffer layer and an increase in the slope of the logarithmic profile. With respect to the turbulence statistics we find for the streamwise velocity fluctuations an increase of the root mean square at low polymer concentration but a return to values comparable to those for water at higher concentrations. The root mean square of the normal velocity fluctuations shows a strong decrease. Also the Reynolds (turbulent) shear stress and the correlation coefficient between the stream wise and the normal components are drastically reduced over the entire pipe diameter. In all cases the Reynolds stress stays definitely non-zero at maximum drag reduction. The consequence of the drop of the Reynolds stress is a large polymer stress, which can be 60% of the total stress. The kinetic-energy balance of the mean flow shows a large transfer of energy directly to the polymers instead of the route by turbulence. The kinetic energy of the turbulence suggests a possibly negative polymeric dissipation of turbulent energy. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Large-eddy simulations are conducted for a rotating golf ball and a rotating smooth sphere at a constant rotational speed at the subcritical, critical and supercritical Reynolds numbers. A negative lift force is generated in the critical regime for both models, whereas positive lift forces are generated in the subcritical and supercritical regimes. Detailed analysis on the flow separations on different sides of the models reveals the mechanism of the negative Magnus effect. Further investigation of the unsteady aerodynamics reveals the effect of rotating motion on the development of lateral forces and wake flow structures. It is found that the rotating motion helps to stabilize the resultant lateral forces for both models especially in the supercritical regime.  相似文献   

15.
Various versions of representations of the percolation Reynolds number for porous media with isotropic and anisotropic flow properties are considered. The formulas are derived and the variants are analyzed with reference to model porous media with a periodic microstructure formed by systems of capillaries and packings consisting of spheres of constant diameter (ideal and fictitious porous media, respectively). A generalization of the Kozeny formula is given for determining the capillary diameter in an ideal porous medium equivalent to a fictitious medium with respect to permeability and porosity and it is shown that the capillary diameter is nonuniquely determined. Relations for recalculating values of the Reynolds number determined by means of formulas proposed earlier are given and it is shown that taking the microstructure of porous media into account, as proposed in [1, 2], makes it possible to explain the large scatter of the numerical values of the Reynolds number in processing the experimental data.  相似文献   

16.
Feedback control on thermal convection in a fluid-saturated porous medium is investigated based on the dynamical systems approach. A low dimensional Lorenz-like model was obtained using the Galerkin-truncated approximation. The possible suppression or enhancement of chaotic convection is demonstrated when the fluid layer is subjected to feedback control in a low-dimensional framework.  相似文献   

17.
针对所设计的三角形涡流发生器开展用于翼型失速流动控制的风洞实验研究,重点讨论涡流发生器几何参数、方向角、安装位置及实验雷诺数等因素对翼型失速流动控制的影响。实验结果表明:涡流发生器作用下,在干净翼失速迎角后能够形成一个升力几乎不随迎角变化的相对稳定的高升力状态,抑制了失速流动的发生,与此同时阻力大幅下降;本文所设计的涡流发生器方向角过大时会削弱翼型失速流动控制的效果;同一涡流发生器作用下雷诺数过大其失速流动控制效果会急剧恶化,第一种涡流发生器控制翼型失速的雷诺数有效范围略宽于第二种涡流发生器。  相似文献   

18.
The supersonic air flow structure and the pressure distribution in the vicinity of a vertical cylinder suspended over the surface of a plate with a turbulent boundary layer are studied experimentally. The effects of the free-stream Mach number and the width of the clearance between the cylinder base and the surface on the dimensions of the separated flow region and the pressure distribution in the latter are examined.  相似文献   

19.
Numerical solutions for the free convection heat transfer in a viscous fluid at a permeable surface embedded in a saturated porous medium, in the presence of viscous dissipation with temperature-dependent variable fluid properties, are obtained. The governing equations for the problem are derived using the Darcy model and the Boussinesq approximation (with nonlinear density temperature variation in the buoyancy force term). The coupled non-linearities arising from the temperature-dependent density, viscosity, thermal conductivity, and viscous dissipation are included. The partial differential equations of the model are reduced to ordinary differential equations by a similarity transformation and the resulting coupled, nonlinear ordinary differential equations are solved numerically by a second order finite difference scheme for several sets of values of the parameters. Also, asymptotic results are obtained for large values of | f w|. Moreover, the numerical results for the velocity, the temperature, and the wall-temperature gradient are presented through graphs and tables, and are discussed. It is observed that by increasing the fluid variable viscosity parameter, one could reduce the velocity and thermal boundary layer thickness. However, quite the opposite is true with the non-linear density temperature variation parameter.  相似文献   

20.
Modeling the flow around a deformable and moving surface is required to calculate the forces exerted by a swimming or flying animal on the surrounding fluid. Assuming that viscosity plays a minor role, linear potential models can be used. These models derived from unsteady airfoil theory are usually divided in two categories depending on the aspect ratio of the moving surface: for small aspect ratios, slender-body theory applies while for large aspect ratios two-dimensional or lifting-line theory is used. This paper aims at presenting these models with a unified approach. These potential models being analytical, they allow fast computations and can therefore be used for optimization or control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号