首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Miscible blends through hydrogen bonding have been intensively studied. The effects of a variety of miscible hydrogen bonded polymer blends on properties such as thermal and thermal oxidative stability, moisture sensitivity, modulus and glass transition temperature are discussed. In addition, the preparation of semi-interpenetrating polymer networks (IPNs) and studies of the effect of crosslinking on the miscibility in hydrogen bonded polymer blends are reviewed.  相似文献   

2.
The properties of diglycidyl ether of bisphenol-A epoxy resin toughened with poly(ether sulfone ether ketone) (PESEK) and poly(ether sulfone) (PES) polymers were investigated. PESEK was synthesised by the nucleophilic substitution reaction of 4,4’-difluorobenzophenone with dihydroxydiphenylsulfone using sulfolane as solvent and potassium carbonate as catalyst at 230 °C. The T g–composition behaviour of the homogeneous epoxy resin/PESEK blend was modelled using Fox, Gordon–Taylor and Kelley–Bueche equations. A single relaxation near the glass transition of epoxy resin was observed in all the blend systems. From dynamic mechanical analysis, the crosslink density of the blends was found to decrease with increase in the thermoplastic concentration. The storage modulus of the epoxy/PESEK blends was lower than that of neat resin, whilst it is higher for epoxy/PES blends up to glass transition temperature, thereafter it decreases. Scanning electron microscopic studies of the blends revealed a homogeneous morphology. The homogeneity of the blends was attributed to the similarity in chemical structure of the modifier and the cured epoxy network and due to the H-bonding interactions between the blend components. The fracture toughness of epoxy resin increased on blending with PESEK and PES. The increase in fracture toughness was due to the increase in ductility of the matrix. The thermal stability of the blends was comparable to that of neat epoxy resin.  相似文献   

3.
The effect of cure temperature and modifier proportion on the miscibility of an epoxy–amine system with a thermoplastic modifier was studied by analysis of phase diagrams, morphologies, and glass transitions. Phase diagrams for the system before and during reaction were obtained from a thermodynamic analysis of phase separation using a model based on Flory–Huggins theory. Different types of morphologies were observed and analyzed in function of cure temperature and modifier proportion. The validity of the thermodynamic model was checked by comparing with observed morphologies. Two glass transitions were observed for most of the modified systems indicating that a phase separation was occurred.  相似文献   

4.
The transparent polymer hybrids were prepared from polystyrene bearing pendant maleimide moieties (16%) and tetraethoxysilane (TEOS) using γ-aminopropyltriethoxysilane (γ-APS) as a crosslinking agent by an in situ sol–gel process by utilizing Michael-addition reaction. Maleimide substituted polystyrene was synthesized by a mild Friedel-Crafts reaction of polystyrene and N-chloromethylmaleimide. Fourier Transform Infrared (FTIR) spectral data confirms the occurrence of Michael-addition reaction between the pendant maleimide moieties of the styrene copolymer and γ-aminopropyltriethoxysilane. The percentage of maleimide substitution was calculated from 1H NMR spectrum. The transparent hybrid shows high solvent resistance at the boiling point of Tetrahydrofuran (THF) since the polystyrene-substituted-maleimide (PS-s-MA) was covalently bonded with siloxane matrix. Thermal properties of the transparent hybrid materials were investigated by Differential scanning calorimeter (DSC) and Thermo gravimetric analysis (TGA) in order to ascertain their glass transition temperature (Tg) and thermal stability behaviour. Morphology and transparency of the organic–inorganic hybrids were confirmed by Scanning electron microscopy (SEM) and optical images. The homogeneity of the polymer hybrids was also examined by nitrogen porosimetry studies.  相似文献   

5.
Advanced thermal analysis methods, such as temperature modulated DSC (differential scanning calorimetry) and quasi-isothermal TMDSC were used to analyze the protein–metallic ion interactions in silk fibroin proteins. The precise heat capacities were measured and theoretically predicted in this study. To remove bound water and simplify the system, a thermal cycling treatment through both standard DSC and TMDSC was used to detect the underlying heat capacity and reveal the phase transitions of the silk–metallic salts system. Results show that K+ metallic salts play the role of plasticizer in silk fibroin proteins, which reduces the glass transition (Tg) of the pure silk protein and negatively affects its structural thermal stability. On the other hand, Ca2+ metallic salts act as an anti-plasticizer, and increase the glass transition and the thermal stability of the silk protein structure. This indicates that the thermal analysis methods offer a new pathway to study protein–metallic ion systems, yielding very fruitful information for the study of protein structures in the future.  相似文献   

6.
Semi-Interpenetrating polymer network materials (semi IPNs) have been synthesized from styrene-acrylonitrile-vinyl acetate terpolymer as polymer I and zinc acrylate as polymer II, using divinyl benzene as crosslinking agent for polymer II. The terpolymer was pre-synthesized by a radical polymerization method using AIBN as the radical initiator. The terpolymer has been characterized by IR and elemental analysis. The composition (Sty: AN:VAc) = (0.25:0.50:0.25), the intrinsic viscosity (0.16 dl/g), the softening temperature range (180–185 °C), the glass transition temperature (23 °C) and the thermal stability (up to 300 °C) of the terpolymer were determined. The IPN was characterized by determining its density (1.12 g/cc at 30 °C), molecular weight between crosslinks (Mc = 1469), thermal stability (~ 400 °C), glass transition temperature (41 °C, 78 °C) and two-phase morphology.  相似文献   

7.
The study deals with the morphological and thermal analysis of binary rubber blends of acrylonitrile-co-butadiene rubber (NBR) with another polymer. Either ethylene propylene diene terpolymer (EPDM), ethylene vinyl acetate (EVA), chlorosulphonated polyethylene (CSM), or polyvinyl chloride (PVC) has been selected for the second phase. Depending on the relative polarity and interaction parameter of the components, the binary blends showed development of a bi-phasic morphology through scanning electron microscopy (SEM). Use of different types of thermal analysis techniques revealed that these blends are generally incompatible excepting one of NBR and PVC. Derivative differential scanning calorimetry (DDSC), in place of conventional DSC, has been used to characterize the compatibility behavior of the blends. NBR–PVC shows appearance of only one glass transition temperature (T g) averaging the individual T g’s of the blend components. The partially missible blend of NBR and CSM shows a broadening of T g interval between the phase components, while the immiscible blends of either NBR–EPDM or NBR–EVA do not show any change in T g values corresponding to the individual rubbers of their blend. The experimental T g values were also compared with those calculated theoretically by Fox equation and observed to match closely with each other. Studies have also been made to evaluate the thermal stability of these blends by thermo-gravimetric analysis (TG) and evaluation of activation energy of respective decomposition processes by Flynn and Wall method. Thermo-mechanical analysis (TMA) was found to be effective for comparison of creep recovery and dimensional stability of the blends both at sub-ambient as well as at elevated temperatures.  相似文献   

8.
Simultaneous two-component interpenetrating polymer networks (IPN's), pseudo IPN's, and linear blends of urethane-containing aliphatic polycarbonate (PCU) and polystyrene (PS) have been synthesized and characterized. The simultaneous full IPN's of PCU and PS had one Tg only at compositions above 50 wt % PCU, as determined by DSC and DMA. The single phase morphology in the one Tg region was confirmed by transmission electron microscopy (TEM). However, the pseudo IPN's and linear blends of PCU and PS exhibited multiple (melting and glass) transitions by DSC measurements and phase separation was observed by TEM over the whole composition range. The full IPN's exhibited a maximum in ultimate mechanical properties at an intermediate composition. Superior solvent resistance as well as better thermal stability was shown by the IPN's as compared to the pseudo IPN's linear blends, and pure crosslinked components.  相似文献   

9.
Microwave-assisted chemical modification of lignin was achieved through esterification using maleic anhydride. Modified lignin (ML) was blended in different proportions up to 25 mass% with polypropylene (PP) using Brabender electronic Plasticorder at 190 °C. The structural and thermal properties of blends were investigated by thermogravometric analysis (TG), differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD) and scanning electron microscopy (SEM). TG analysis showed increased thermal stability of blends due to antioxidant property of ML, which opposed oxidative degradation of PP. DSC analysis indicted slight depression in a glass transition temperature and melting temperature of blends due to partial miscible blend behavior between PP and ML. All blends showed higher crystallization temperatures and continuously reducing percentage crystallinity with increasing ML proportion in the blends. WAXD analysis indicated that PP crystallized in β polymeric form in addition to α-form in the presence of ML. However, proportion of β-form did not show linear relation with increase in ML proportion, thus ML acts as β nucleating agent in the PP matrix. SEM analysis showed good dispersion/miscibility in PP matrix indicating modification in lignin is useful.  相似文献   

10.
The surface glass transition temperature (T g surface) of the bulk samples of miscible blends formed of amorphous polystyrene (PS) and poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) has been characterised in terms of an adhesion approach we proposed recently. T g surface has been measured as the temperature transition “occurrence of autoadhesion–nonoccurrence of autoadhesion” by employing a lap-shear joint mechanical testing method. The effect of the reduction in T g surface with respect to the glass transition temperature of the bulk (T g bulk), which had been observed earlier in pure homopolymers, has been found to exist in the blends of PS with PPO as well. The values of this effect for the blends have been compared with those for pure homopolymers, and the differences found have been discussed.  相似文献   

11.
Polystyrene (PS), being an amorphous polymer is immiscible with other polymers. To engender miscible blends, PS has been functionalized with an active amino‐functional group on the molecular chains of PS to yield amino‐substituted polystyrene (APS), which serves as a reactive compatibilizer. The compatibilization effect of amino functionalized polystyrene on the rubber toughening was explored and results were compared in terms of morphology, thermal, and mechanical properties of PS/SEBS‐g‐MA versus APS/SEBS‐g‐MA blends. In addition, the effect of rubber content on the blend morphology and mechanical properties were investigated. An appreciable change in the thermal stability of APS blends in comparison with PS blend has been probed. A marked correlation has been observed between phase morphology and thermal stability. Use of APS produced the compatibilized blends which render improved blend morphology, enhanced thermal and mechanical properties. Optimal thermal, morphological and mechanical profiles were depicted by 20‐wt% APS blend. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
Thermally stable polysilylenemethylenes (PSMs) with siloxane crosslinking moieties were successfully synthesized by chlorodephenylation of preformed poly(methylphenylsilylenemethylene) (PMPSM) and subsequent in situ alcoholysis/hydrolysis/condensation reactions. The simplified process and mild reaction conditions are quite advantageous. The crosslink density of these materials can be adjusted by the degree of chlorodephenylation, although an alkoxysilyl group remains to some extent. The resulting crosslinked PSMs have well defined structures in which the backbone is composed of MePhSiCH2 and Me(MeO)SiCH2 as well as Me(O1/2)SiCH2 as a crosslinking moiety. The resulting crosslinked PSMs exhibited glass‐transition temperatures ranging from 15 to 20 °C, whereas that of linear PMPSM was 22 °C. The crosslinked PSMs remained unchanged in weight below 300 °C, suggesting that they are thermally stable up to that temperature. The good solvent resistance caused by crosslinking as well as high thermal stability of these materials allow us to design new PSM‐based polymer blends and preceramic polymers. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 416–422, 2002  相似文献   

13.
可交联含氟聚醚醚酮的合成   总被引:2,自引:3,他引:2  
聚醚醚酮 (PEEK)是一种耐热等级高、耐化学药品、耐辐射并有优异的电性能及机械性能的特种工程塑料 .由于其综合性能优异 ,PEEK在航空航天、通信、电子和机械化工等领域获得成功应用 [1] .含氟芳香聚合物以其独特的性能而成为低介电常数微电子和低损耗光波导器件极具潜力的材料 [2 ] .聚合物良好的溶解性虽对光电集成电路的加工十分重要 ,但也要满足多层化操作过程 ,还要考虑器件成型后的抗化学药品性 .因而 ,在聚合物中引入可交联组分是必要和可行的方法 .另外 ,交联后的聚合物将有更高的玻璃化转变温度 (Tg)、更好的尺寸稳定性和防开…  相似文献   

14.
The morphologies developed by blends based on a polystyrene modifier and an epoxy system polymerized with a monoamine and a diamine mixed in different proportions that are phase separated during the polymerization, were studied. The proportion of monoamine–diamine in the system affects the crosslinking degree of the material, which was controlled and continuously modified from a linear polymer to a highly crosslinked polymer. The effect of modifier proportion, polymerization temperature, and monoamine–diamine ratio on the final morphology was investigated. Different types of morphologies were developed depending mainly on the composition of modifier in the blend. The nature of the separated phases in the different types of morphologies was investigated and confirmed by experiments with a solvent and elemental analysis. Explanations for the developed morphologies as a function of the variables were proposed and discussed in detail.  相似文献   

15.
The thermal behaviour of natural rubber/acrylonitrile butadiene rubber (NR/NBR) was studied using thermogravimetry (TG) and differential scanning calorimetry (DSC) in terms of blend ratio, crosslinking systems, fillers and compatibilizer (neoprene) were analyzed. The presence of NBR markedly increases the thermal stability of their blends and it lies in between NR and NBR. DSC studies revealed the thermodynamic immiscibility of the NR/NBR blends by the presence of two distinct glass transition temperatures and the immiscibility was prominent even in the presence of a compatibilizer.  相似文献   

16.
The morphology, thermal and mechanical properties of polystyrene (PS) blends with 2.5-20 wt% of poly(vinyl chloride) (PVC) have been studied. The measurement of the glass transition temperature (Tg) from the maxima of tan δ data using dynamic mechanical thermal analysis showed that the blends were incompatible and homogenously distributed only within a limited range of PVC contents in PS. The value of the storage modulus was found to increase initially but then decreased with further addition of PVC in the matrix. Distribution of the phases in the virgin and degraded blends was also studied through scanning electron microscopy. The thermogravimetric studies on these blends were carried out under inert atmosphere from ambient to 800 °C at different heating rates varying from 2.5 to 20 °C/min. The thermal decomposition temperatures of blends were found higher than that of pure PS which indicated the stabilizing effects of PVC on PS. The effect varies with the heating rates and the composition of the blends and the phenomenon has been explained due to changing morphology of the blends with composition and the degradation time which affect the interfacial interaction between the degrading products from the polymer components. The kinetic parameters of the degradation process calculated from a method described by Ozawa have been reported for these blends.  相似文献   

17.
Polymer composite materials were prepared from poly(ethylene terephthalate)–poly(trimethylene terephthalate) blends as the matrix and different microcrystalline cellulose (MCC) filler levels (0–40 wt%) using melt compounding followed by compression molding. The composites were analyzed using dynamic mechanical thermal analysis (DMTA), differential scanning calorimetry (DSC) and thermogravimetric analysis (TG). The DSC results indicated that there is no consistent or significant influence of the MCC addition on the glass transition (T g), melting (T m), and crystallization temperature of the composites. With increasing MCC content, dynamic mechanical properties improved because of the reinforcing effect of the MCC. The tan δ peak values from the DMTA were not significantly changed as the MCC content increased. TG indicated that the onset temperature of rapid thermal degradation decreased with increasing MCC content. It was also found that the thermal stability of the composites slightly decreased as the MCC content increased.  相似文献   

18.
Most studies report a depression of the glass transition temperature in thin polymer films. To gain insight into this behavior, we have simultaneously investigated the structure of materials and their thermal behavior by developing an ATR–FTIR–nano-differential scanning calorimeter (nanoDSC) hybrid instrument consisting of a ZnSe ATR crystal upon which the sample and a DSC-on-a-chip rests. FTIR spectra showed property changes with film thickness; nanoDSC did not. The relative absorbance of an IR peak at 797 cm−1 was found to correlate with aging time in thin films, suggesting that conformational structure of thin films is critical to their thermal behavior.  相似文献   

19.
The effect of thermoplastic modification of an epoxy-amine system on the cure reaction, miscibility and thermal stability of the system was investigated. The cure kinetics showed an autocatalytic behavior. Modifier did not affect either the total reaction heat or the achieved maximum conversion but delayed the kinetics. The model of Horie-Kamal corrected by diffusion factor was used to adjust kinetics in the whole range of conversions. The modified systems showed two glass transitions indicating two separated phases, whose compositions were estimated using the Fox and Couchman equations. Modifier did not affect the thermal and thermooxidative stability of the system.  相似文献   

20.
Thermal characterization of materials provides conclusions regarding the identification of materials as well as their purity and composition, polymorphism, and structural changes. Analytical experimental techniques for thermal characterization comprise of a group of techniques, in which physical properties of materials are ascertained through controlled temperature program. Among these techniques, traditional differential scanning calorimetry (DSC) is a well-accepted technique for analyzing thermal transitions in condensed systems. Modulated DSC (MDSC) is used to study the same material properties as conventional DSC including: transition temperatures, melting and crystallization, and heat capacity. Further, MDSC also provides unique feature of increased resolution and increased sensitivity in the same measurement. “Hot disk thermal constant analyzer”, based on Transient Plane Source (TPS) technique, offers simultaneous measurement of thermal transport properties of specimen, which are directly related to heat conduction such as thermal conductivity (λ) and thermal diffusivity (χ). This method enables the thermal analysis on large number of materials from building materials to materials with high thermal conductivity like iron. The temperature range covered so far extends from the liquid nitrogen point to 1000 K and should be possible to extend further. This review also presents some interesting results of phase transition temperature of miscible (CPI/TPI) and immiscible (PS/PMMA) polymeric systems carried out through dynamic mechanical analyzer along with the thermal transport properties obtained for cis-polyisoprene (CPI), trans-polyisoprene (TPI), and their blends determined by TPS technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号