首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The improved iterative method of Newton’s type for the simultaneous inclusion of all simple complex zeros of a polynomial is proposed. The presented convergence analysis, which uses the concept of the R-order of convergence of mutually dependent sequences, shows that the convergence rate of the basic third order method is increased from 3 to 6 using Ostrowski’s corrections. The new inclusion method with Ostrowski’s corrections is more efficient compared to all existing methods belonging to the same class. To demonstrate the convergence properties of the proposed method, two numerical examples are given.  相似文献   

2.
Using a suitable zero-relation and the inclusion isotonicity property, new interval iterative methods for the simultaneous inclusion of simple complex zeros of a polynomial are derived. These methods produce disks in the complex plane that contain the polynomial zeros in each iteration, providing in this manner an information about upper error bounds of approximations. Starting from the basic method of the fourth order, two accelerated methods with Newton’s and Halley’s corrections, having the order of convergence five and six respectively, are constructed. This increase of the convergence rate is obtained without any additional operations, which means that the methods with corrections are very efficient. The convergence analysis of the basic method and the methods with corrections is performed under computationally verifiable initial conditions, which is of practical importance. Two numerical examples are presented to demonstrate the convergence behavior of the proposed interval methods.  相似文献   

3.
A one parameter family of iterative methods for the simultaneous approximation of simple complex zeros of a polynomial, based on a cubically convergent Hansen–Patrick's family, is studied. We show that the convergence of the basic family of the fourth order can be increased to five and six using Newton's and Halley's corrections, respectively. Since these corrections use the already calculated values, the computational efficiency of the accelerated methods is significantly increased. Further acceleration is achieved by applying the Gauss–Seidel approach (single-step mode). One of the most important problems in solving nonlinear equations, the construction of initial conditions which provide both the guaranteed and fast convergence, is considered for the proposed accelerated family. These conditions are computationally verifiable; they depend only on the polynomial coefficients, its degree and initial approximations, which is of practical importance. Some modifications of the considered family, providing the computation of multiple zeros of polynomials and simple zeros of a wide class of analytic functions, are also studied. Numerical examples demonstrate the convergence properties of the presented family of root-finding methods.  相似文献   

4.
Starting from a suitable fixed point relation, a new family of iterative methods for the simultaneous inclusion of multiple complex zeros in circular complex arithmetic is constructed. The order of convergence of the basic family is four. Using Newtons and Halleys corrections, we obtain families with improved convergence. Faster convergence of accelerated methods is attained with only few additional numerical operations, which provides a high computational efficiency of these methods. Convergence analysis of the presented methods and numerical results are given. AMS subject classification 65H05, 65G20, 30C15  相似文献   

5.
Using Newton's and Halley's corrections, some modifications of the simultaneous method for finding polynomial complex zeros, based on square root iteration, are obtained. The convergence order of the proposed methods is five and six respectively. Further improvements of these methods are performed by applying the Gauss—Seidel approach. The lower bounds of the R-order of convergence and the convergence conditions for the accelerated (single-step) methods are given. Faster convergence is attained without additional calculations. The considered iterative procedures are illustrated numerically in the example of an algebraic equation.  相似文献   

6.
Starting from a suitable fixed point relation, a new one-parameter family of iterative methods for the simultaneous inclusion of complex zeros in circular complex arithmetic is constructed. It is proved that the order of convergence of this family is four. The convergence analysis is performed under computationally verifiable initial conditions. An approach for the construction of accelerated methods with negligible number of additional operations is discussed. To demonstrate convergence properties of the proposed family of methods, two numerical examples results are given.  相似文献   

7.
Using Carstensen's results from 1991 we state a theorem concerning the localization of polynomial zeros and derive two a posteriori error bound methods with the convergence order 3 and 4. These methods possess useful property of inclusion methods to produce disks containing all simple zeros of a polynomial. We establish computationally verifiable initial conditions that guarantee the convergence of these methods. Some computational aspects and the possibility of implementation on parallel computers are considered, including two numerical examples. A comparison of a posteriori error bound methods with the corresponding circular interval methods, regarding the computational costs and sizes of produced inclusion disks, were given.  相似文献   

8.
The theory of point estimation treating the initial conditions for the safe convergence of iterative processes for the simultaneous determination of polynomial zeros is considered. A general approach which makes use of corrections appearing in iterative formulas is given and demonstrated in the case of three well known methods without derivatives and based on Weierstrass’ corrections. The established convergence conditions are of practical importance since they depend only on available data: coefficients of a polynomial and initial approximations to the zeros. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
10.
Some methods of numerical analysis, used for obtaining estimations of zeros of polynomials, are studied again, more especially in the case where the zeros of these polynomials are all strictly positive, distinct and real. They give, in particular, formal lower and upper bounds for the smallest zero. Thanks to them, we produce new formal lower and upper bounds of the constant in Markov-Bernstein inequalities in L 2 for the norm corresponding to the Laguerre and Gegenbauer inner products. In fact, since this constant is the inverse of the square root of the smallest zero of a polynomial, we give formal lower and upper bounds of this zero. Moreover, a new sufficient condition is given in order that a polynomial has some complex zeros. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
In this paper, we present a new tri-parametric derivative-free family of Hansen-Patrick type methods for solving nonlinear equations numerically. The proposed family requires only three functional evaluations to achieve optimal fourth order of convergence. In addition, acceleration of convergence speed is attained by suitable variation of free parameters in each iterative step. The self-accelerating parameters are estimated from the current and previous iteration. These self-accelerating parameters are calculated using Newton’s interpolation polynomials of third and fourth degrees. Consequently, the R-order of convergence is increased from 4 to 7, without any additional functional evaluation. Furthermore, the most striking feature of this contribution is that the proposed schemes can also determine the complex zeros without having to start from a complex initial guess as would be necessary with other methods. Numerical experiments and the comparison of the existing robust methods are included to confirm the theoretical results and high computational efficiency.  相似文献   

12.
In recent papers circulant preconditioners were proposed for ill-conditioned Hermitian Toeplitz matrices generated by 2-periodic continuous functions with zeros of even order. It was show that the spectra of the preconditioned matrices are uniformly bounded except for a finite number of outliers and therefore the conjugate gradient method, when applied to solving these circulant preconditioned systems, converges very quickly. In this paper, we consider indefinite Toeplitz matrices generated by 2-periodic continuous functions with zeros of odd order. In particular, we show that the singular values of the preconditioned matrices are essentially bounded. Numerical results are presented to illustrate the fast convergence of CGNE, MINRES and QMR methods.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

13.
There is a very small number of higher-order iteration functions for multiple zeros whose order of convergence is greater than four. Some scholars have tried to propose optimal eighth-order methods for multiple zeros. But, unfortunately, they did not get success in this direction and attained only sixth-order convergence. So, as far as we know, there is not a single optimal eighth-order iteration function in the available literature that will work for multiple zeros. Motivated and inspired by this fact, we present an optimal eighth-order iteration function for multiple zeros. An extensive convergence study is discussed in order to demonstrate the optimal eighth-order convergence of the proposed scheme. In addition, we also demonstrate the applicability of our proposed scheme on real-life problems and illustrate that the proposed methods are more efficient among the available multiple root finding techniques. Finally, dynamical study of the proposed schemes also confirms the theoretical results.  相似文献   

14.
Using a fixed point relation of the square-root type and the basic fourth-order method, improved methods of fifth and sixth order for the simultaneous determination of simple zeros of a polynomial are obtained. An increase in convergence is achieved without additional numerical operations, which points to high computational efficiency of the accelerated methods. The main aim of this work is the convergence analysis of improved simultaneous methods given under computationally verifiable initial conditions in the spirit of Smale’s point estimation theory.  相似文献   

15.
In this paper a class of modified Halley iteration methods for simultaneously finding polynomial zeros is discussed. A unified convergence theorem is proposed and the efficiency analysis is given.  相似文献   

16.
王兴华  郑士明 《计算数学》1985,7(4):433-444
本文对[1]所提出的一族同时求多项式全部零点的并行迭代兼区间迭代加以进一步的发展。首先,作为纯粹的并行迭代法,我们在§2把每步并行迭代扩展为q个并行子步,这样得到的并行迭代法对只有单零点的多项式的全部零点的收敛是q(p 1)阶的。值得注意的是,在这里阶的提高大大超过了每步计算代价的增加,例如,当q=2时,每步  相似文献   

17.
18.
Summary. Classical Weierstrass' formula [29] has been often the subject of investigation of many authors. In this paper we give some further applications of this formula for finding the zeros of polynomials and analytic functions. We are concerned with the problems of localization of polynomial zeros and the construction of iterative methods for the simultaneous approximation and inclusion of these zeros. Conditions for the safe convergence of Weierstrass' method, depending only on initial approximations, are given. In particular, we study polynomials with interval coefficients. Using an interval version of Weierstrass' method enclosures in the form of disks for the complex-valued set containing all zeros of a polynomial with varying coefficients are obtained. We also present Weierstrass-like algorithm for approximating, simultaneously, all zeros of a class of analytic functions in a given closed region. To demonstrate the proposed algorithms, three numerical examples are included. Received September 13, 1993  相似文献   

19.
The construction of a class of three-point methods for solving nonlinear equations of the eighth order is presented. These methods are developed by combining fourth order methods from the class of optimal two-point methods and a modified Newton’s method in the third step, obtained by a suitable approximation of the first derivative based on interpolation by a nonlinear fraction. It is proved that the new three-step methods reach the eighth order of convergence using only four function evaluations, which supports the Kung-Traub conjecture on the optimal order of convergence. Numerical examples for the selected special cases of two-step methods are given to demonstrate very fast convergence and a high computational efficiency of the proposed multipoint methods. Some computational aspects and the comparison with existing methods are also included.  相似文献   

20.
Newton-Raphson method has always remained as the widely used method for finding simple and multiple roots of nonlinear equations. In the past years, many new methods have been introduced for finding multiple zeros that involve the use of weight function in the second step, thereby, increasing the order of convergence and giving a flexibility to generate a family of methods satisfying some underlying conditions. However, in almost all the schemes developed over the past, the usual way is to use Newton-type method at the first step. In this paper, we present a new two-step optimal fourth-order family of methods for multiple roots (m > 1). The proposed iterative family has the flexibility of choice at both steps. The development of the scheme is based on using weight functions. The first step can not only recapture Newton's method for multiple roots as special case but is also capable of defining new choices of first step. A stability analysis of some particular cases is also given to explain the dynamical behavior of the new methods around the multiple roots and decide the best values of the free parameters involved. Finally, we compare our methods with the existing schemes of the same order with a real life application as well as standard test problems. From the numerical results, we find that our methods can be considered as a better alternative for the existing procedures of same order.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号