首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用格子Boltzmann方法数值模拟化学反应中混溶流体在微通道中的粘性指进现象.模拟采用单浓度变量的双稳态化学反应模型,重点研究指进的形态位置随化学反应速率和稳态浓度参数(即无化学反应发生的界面浓度)的变化.结果表明:随着反应速率的增加,指进界面变薄;而稳态浓度参数的变化则影响反应区的分布以及反应速率,导致指进形态以及位置的改变,甚至出现指尖液滴分离.  相似文献   

2.
利用格子Boltzmann方法和GPU计算技术,在孔隙尺度上模拟多孔介质中包含界面化学反应的粘性指进现象,定量分析化学反应对流体混合的影响.采用单浓度变量的双稳态模型来描述界面反应,而各向同性的多孔介质则通过四参数法生成.研究发现化学反应能减小指进界面厚度,抑制流体的混合,甚至会出现反混合现象,并且随着反应速率的增加,影响越明显.  相似文献   

3.
We study pattern formation during tensile deformation of confined viscoelastic layers. The use of a model system [poly(dimethylsiloxane) with different degrees of cross-linking] allows us to go continuously from a viscous liquid to an elastic solid. We observe two distinct regimes of fingering instabilities: a regime called "elastic" with interfacial crack propagation, where the fingering wavelength scales only with the film thickness, and a bulk regime called "viscoelastic," where the fingering instability shows a Saffman-Taylor-like behavior. We find good quantitative agreement with theory in both cases and present a reduced parameter describing the transition between the two regimes and allowing us to predict the observed patterns over the whole range of viscoelastic properties.  相似文献   

4.
An appraisal is made of several subgrid scale (SGS) viscous/scalar dissipation closures via a priori analysis of direct numerical simulation data in a temporally evolving compressible mixing layer. The effects of the filter width, the compressibility level and the Schmidt number are studied for several models. Based on the scaling of SGS kinetic energy, a new formulation for SGS viscous dissipation is proposed. This yields the best overall prediction of the SGS viscous dissipation within the inertial subrange. An SGS scalar dissipation model based on the proportionality of the turbulent time scale with the scalar mixing time scale also performs the best for the filter widths in the inertial subrange. Two dynamic methods are implemented for the determination of the model coefficients. The one based on the global equilibrium of dissipation and production is shown to be more satisfactory than the conventional dynamic model.  相似文献   

5.
This paper aims at identifying and analyzing the influence of high-frequency, high-intensity ultrasonic radiation at the interface between immiscible (different types of oils and aqueous solutions) and miscible (different types of oil and solvent) fluids. An extensive set of Hele-Shaw type experiments were performed for several viscosity ratios, and interfacial tension. Fractal analysis techniques were applied to quantify the degree of fingering and branching. This provided a rough assessment of the degree of perturbation generated at the interface when the capillary forces along with the viscous forces are effective. Miscible Hele-Shaw experiments were also presented to isolate the effect of viscous forces. We found that ultrasound acts to stabilize the interfacial front, and that such effect is most pronounced at low viscosity ratios. An erratum to this article is available at .  相似文献   

6.
Growth of complex dendritic fingers at the interface of air and a viscous fluid in the narrow gap between two parallel plates is an archetypical problem of pattern formation. We find a surprisingly effective means of suppressing this instability by replacing one of the plates with an elastic membrane. The resulting fluid-structure interaction fundamentally alters the interfacial patterns that develop and considerably delays the onset of fingering. We analyze the dependence of the instability on the parameters of the system and present scaling arguments to explain the experimentally observed behavior.  相似文献   

7.
金鑫  刘高洁  郭照立 《计算物理》2015,32(4):423-430
提出一个模拟多孔介质内混溶流体间粘性指进现象的格子Boltzmann模型.采用双分布函数分别求解压力场和浓度场.在浓度场平衡态分布函数中引入与浓度扩散相关的参数.通过调节参数,使粒子碰撞过程中的松弛时间保持恒定.模拟了粘度相同的流体间的混相驱替问题.不同网格下的模拟结果均与解析解吻合良好,验证了模型的可行性.进一步研究粘度比和贝克莱数(Pe)对粘性指进现象的影响.结果显示,增大粘度比会促进"手指"的增长.当粘度比不变时,存在Pe的临界值.当Pe超过临界值时,"手指"前缘会出现分裂现象.对横向平均浓度场的研究显示,混合区域的长度随时间的变化分为两个阶段,它首先随着t1/2成线性增长,然后随着t成线性增长.  相似文献   

8.
The lifting Hele-Shaw cell (LHSC) is used to study adhesion as well as viscous fingering. In the present paper we report a series of observations of development of the interface for different viscous fluids, both Newtonian and non-Newtonian, in a LHSC operated at a constant lifting force. Glass and perspex are used as the plates in two different sets of experiments. The objectives are 1) to measure the time required to separate the plates as a function of the lifting force and 2) to note the force above which viscous fingering appears. We find that for the Newtonian fluids, the plate separation time follows a universal power law with the lifting force, irrespective of fluid and substrate. The non-Newtonian fluids too, with proper scaling obey the same power law. The appearance of fingering, however, depends on the properties of the fluid as well as the substrate. We suggest a modified form of the capillary number which controls the onset of fingering; this new quantity, termed the “fingering parameter” involves the dielectric constants of the substrate and fluid in addition to the viscosity and surface tension.  相似文献   

9.
The development of viscous fingering patterns has been observed for Hele-Shaw flows with both planar and circular initial interfaces. These flows have close formal connection with dendritic growth. Local curvature as a function of interfacial arclength has been extracted for all cases and modal analyses have been performed on these curvature functions. A crude measure of the content of the modal analyses comes from the behavior of the average wavenumber, , which at first increases during an initial ramifying flow period and then decreases with time as the pattern coarsens in the quiet regions behind the advancing fingers faster than it ramifies at the front.  相似文献   

10.
Miscible viscous fingering classically occurs when a less viscous fluid displaces a miscible more viscous one in a porous medium. We analyze here how double diffusive effects between a slow diffusing S and a fast diffusing F component, both influencing the viscosity of the fluids at hand, affect such fingering, and, most importantly, can destabilize the classically stable situation of a more viscous fluid displacing a less viscous one. Various instability scenarios are classified in a parameter space spanned by the log-mobility ratios R(s) and R(f) of the slow and fast component, respectively, and parametrized by the ratio of diffusion coefficients δ. Numerical simulations of the full nonlinear problem confirm the existence of the predicted instability scenarios and highlight the influence of differential diffusion effects on the nonlinear fingering dynamics.  相似文献   

11.
A general model for phenomenological transport in phase transition is derived, which extends Jäckle and Frisch model of phase transition with memory and the Cahn–Hilliard model. In addition to including interfacial energy to account for the presence of interfaces, we introduce viscosity and relaxation contributions, which result from incorporating memory effect into the driving potential. Our simulation results show that even without interfacial energy term, the viscous term can lead to transient diffuse interfaces. From the phase transition induced hysteresis, we discover different energy dissipation mechanism for the interfacial energy and the viscosity effect. In addition, by combining viscosity and interfacial energy, we find that if the former dominates, then the concentration difference across the phase boundary is reduced; conversely, if the interfacial energy is greater then this difference is enlarged.  相似文献   

12.
A transport model is developed for nonlocal effects on motion and heating of electrons in inductively coupled plasma reactors. The model is based on the electron momentum equation derived from the Boltzmann equation, retaining anisotropic stress components which in fact are viscous stresses. The resulting model consists of transport equations for the magnitude of electron velocity oscillation and terms representing energy dissipation due to viscous stresses in the electron energy equation. In this model, electrical current is obtained in a nonlocal manner due to viscous effects, instead of Ohm's law or the electron momentum equation without viscous effects, while nonlocal heating of electrons is represented by the viscous dissipation. Computational results obtained by two-dimensional numerical simulations show that nonlocal determination of electrical current indeed is important, and viscous dissipation becomes an important electron heating mechanism at low pressures. It is suspected that viscous dissipation in inductively coupled plasma reactors in fact represents stochastic heating of electrons, and this possibility is exploited by discussing physical similarities between stochastic heating and energy dissipation due to the stress tensor  相似文献   

13.
We study the folding instability of a viscous thread surrounded by a less viscous miscible liquid flowing from a square to a diverging microchannel. Because of the change in the flow introduced by the diverging channel, the viscous thread minimizes viscous dissipation by oscillating to form bends rather than by simply dilating. The folding frequency and the thread diameter can be related to the volume flow rates and thus to the characteristic shear rate. Diffusive mixing at the boundary of the thread can significantly modify the folding flow morphologies. This microfluidic system enables us to control the bending of the thread and to enhance mixing between liquids having significantly different viscosities.  相似文献   

14.
A complete macroscopic theory for compressible nematic-viscous fluid interfaces is developed and used to characterize the interfacial elastic, viscous, and viscoelastic material properties. The derived expression for the interfacial stress tensor includes elastic and viscous components. Surface gradients of the interfacial elastic stress tensor generates tangential Marangoni forces as well as normal forces. The latter may be present even in planar surfaces, implying that in principle static planar interfaces may accommodate pressure jumps. The asymmetric interfacial viscous stress tensor takes into account the surface nematic ordering and is given in terms of the interfacial rate of deformation and interfacial Jaumann derivative. The material function that describes the anisotropic viscoelasticity is the dynamic interfacial tension, which includes the interfacial tension and dilational viscosities. Viscous dissipation due to interfacial compressibility is described by the anisotropic dilational viscosity, and it is shown to describe the Boussinesq surface fluid appropriate for Newtonian interfaces when the director is homeotropic. Three characteristic interfacial shear viscosities are defined according to whether the surface orientation is along the velocity direction, the velocity gradient, or the unit normal. In the last case the expression reduces to the interfacial shear viscosity of the Boussinesq surface fluid. The theory provides a theoretical framework to study interfacial stability, thin liquid film stability and hydrodynamics, and any other interfacial rheology phenomena.  相似文献   

15.
We consider dynamic scaling in gravity driven miscible viscous fingering. We prove rigorous one-sided bounds on bulk transport and coarsening in regimes of physical interest. The analysis relies on comparison with solutions to one-dimensional conservation laws, and new scale-invariant estimates. Our bounds on the size of the mixing layer are of two kinds: a naive bound that is sharp in the absence of diffusion, and a more careful bound that accounts for diffusion as a selection criterion in the limit of vanishingly small diffusion. The naive bound is simple and robust, but does not yield the experimental speed of transport. In a reduced model derived by Wooding [20], we prove a sharp upper bound on the size of the mixing layer in accordance with his experiments. Woodings model also provides an example of a scalar conservation law where the entropy condition is not the physically appropriate selection criterion.  相似文献   

16.
赵明  郁伯铭 《物理学报》2011,60(9):98103-098103
提出了一个描述多孔介质孔隙尺寸分布的三维分形网络模型,利用该模型对多孔介质中的非混溶两相流驱替进行了数值模拟,研究了孔隙尺寸分布分维Df和两相流黏滞比M对驱替前沿指进型的影响,结果表明指进型容量维数Dh随着孔隙尺寸分布分维Df以及黏滞比M的增大而减少,并通过曲线拟合得到了它们之间的定量关系. 关键词: 多孔介质 三维网络 黏滞指进 非混溶两相流  相似文献   

17.
经昊达  张向军  田煜  孟永钢 《物理学报》2015,64(16):168101-168101
摩擦与润滑过程是典型的能量耗散过程, 在机理上与非平衡热力学中的熵增、耗散结构等理论颇有相似之处. 通过热力学分析可以对一些典型的摩擦磨损过程做出合理的机理揭示与推测. 本文利用热力学理论对典型的润滑过程进行了建模分析. 采用分离压模型表征和计入了微尺度下的固液界面作用, 揭示分析了润滑热力学模型与润滑状态Stribeck曲线的联系. 从分析计算结果来看, 润滑Stribeck曲线的摩擦系数最低点与系统热力学上的熵增率最低点具有相当好的对应关系, 而润滑状态从弹流润滑向薄膜润滑的转变过程, 可以用耗散结构理论加以机理解释. 文中的热力学模型和方法能够有效地体现出润滑过程中多物理要素跨尺度非线性耦合的作用, 对实际工程与实验有着重要的指导作用.  相似文献   

18.
We examine the time-dependent distortion of a nearly circular viscous domain in an infinite viscous sheet when suction occurs. Suction, the driving force of the instability, can occur everywhere in the two phases separated by an interface. The model assumes a two-dimensional Stokes flow; the selection of the wavelength at short times is determined by a variational procedure. Contrary to the viscous fingering instability, undulations of the boundary may be observed for enough pumping, whatever the sign of the viscosity contrast between the two fluids involved. We apply our model to the suction by lipoproteins of cholesterol-enriched domains in giant unilamellar vesicles. Comparison of the number of undulations given by the model and by the experiments gives reasonable values of physical quantities such as the viscosities of the domains.  相似文献   

19.
We simulate viscous fingering generated by separating two plates with a constant force, in a lifting Hele-Shaw cell. Variation in the patterns for different fluid viscosity and lifting force is studied. Viscous fingering is strongly affected by anisotropy. We report a computer simulation study of fingering patterns, where circular or square grooves are etched on to the lower plate. Results are compared with experiments.  相似文献   

20.
We examine the statistics of active scalar fluctuations in high-Rayleigh number fingering convection with high-resolution three-dimensional numerical experiments. Marked non-Gaussian tails are found in the one-point distribution of buoyancy fluctuations. A modified theory based on an original approach by Yakhot (1989) is used to model the active scalar distributions as a function of the conditional expectation values of scalar dissipation and fluxes in the flow. Simple models for these two quantities highlight the role of blob-like coherent structures for scalar statistics in fingering convection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号