首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
We propose a method to achieve quantum entanglement of two Fock states with perfectly efficient, ultraslow propagation enhanced four-wave mixing. A cold atomic medium is illuminated with a two-mode cw control laser to produce coherent mixtures of excited states. An ultraslowly propagating, single-photon quantum probe field completes the four-wave mixing with 100% photon flux conversion efficiency, creating a depth dependent entanglement of two Fock states. We show that at a suitable propagation distance, a maximum entangled state is created with a single-photon wave-packet state that has 50% probability of being in each of two product-type Fock states.  相似文献   

2.
Whereas quantum cryptography ensures security by virtue of complete indistinguishability of nonorthogonal quantum states, attenuation in quantum communication channels and the unavailability of single-photon sources present major problems. In view of these difficulties, the security of quantum cryptography can change from unconditional to conditional. Since the restrictions imposed by nonrelativistic quantum mechanics and used to formulate key distribution protocols have been largely exhausted, new principles are required. The fundamental relativistic causality principle in quantum cryptography can be used to propose a new approach to ensuring unconditional security of quantum cryptosystems that eliminates the aforementioned difficulties. Quantum cryptosystems of this kind should obviously be called relativistic. It is shown that relativistic quantum cryptosystems remain unconditionally secure: first, attenuation in a quantum communication channel can only reduce the key generation rate, but not the security of the key; second, the source may not generate pure single-photon states, and a nonzero single-photon probability will suffice. The scheme remains secure even if the contribution of a single-photon component is arbitrarily small. This formally implies that a state may be characterized by an arbitrarily large mean photon number. The single-photon probability affects only the key generation rate, but not security.  相似文献   

3.
通过分析光学分束器对单光子态的作用关系,提出了一个利用分束器和光子数探测器的单光子纠缠的直接测量方案.方案中用到单光子与空间模纠缠及其两个备份,并让它们通过一个50:50的分束器.选用并发度为纠缠度量,其可由单光子探测器的探测概率直接获得.此方案不需复杂的量子态层析方法,同时只用到在量子信息处理中常用的光学器件,增强了方案在实验上实现的可行性.  相似文献   

4.
We study a teleportation protocol of an unknown macroscopic qubit by means of a quantum channel composed of the displaced vacuum and single-photon states. The scheme is based on linear optical devices such as a beam splitter and photon number resolving detectors. A method based on conditional measurement is used to generate both the macroscopic qubit and entangled state composed from displaced vacuum and single-photon states. We show that such a qubit has both macroscopic and microscopic properties. In particular, we investigate a quantum teleportation protocol from a macroscopic object to a microscopic state. The text was submitted by the author in English.  相似文献   

5.
光学微腔中少光子数叠加态的耗散动力学   总被引:2,自引:0,他引:2       下载免费PDF全文
文洪燕  杨杨  韦联福 《物理学报》2012,61(18):184206-184206
通过考察耗散光学腔中少光子数叠加态的Wigner函数随时间 的变化行为, 揭示其非经典特性的动力学演化. 结果表明, 初始时Wigner函数为负的少光子数叠加态, 在耗散过程中其负性逐渐减小 直至消失, 并最后达到一个稳定的正值. 但这并不意味着耗散量子态非经典特性的完全消失. 实际上, 作为非经典特性的另一个重要参量, 光子的二阶关联函数g(2)(0) (g(2)(0)<1意味着光子是非经典地反聚束) 是一个耗散动力学不变的物理量. 我们证明, 光子的二阶反关联函数g(2A)(0)却是一个随着耗散而改变的物理参量, 从而可以用于描述光学微腔中光量子态的耗散动力学行为. 最后, 我们给出一个在实验上如何制备少光子数叠加态并对其Wigner函数进行探测的方案.  相似文献   

6.
We consider the deterministic generation of entangled multiqubit states by the sequential coupling of an ancillary system to initially uncorrelated qubits. We characterize all achievable states in terms of classes of matrix-product states and give a recipe for the generation on demand of any multiqubit state. The proposed methods are suitable for any sequential generation scheme, though we focus on streams of single-photon time-bin qubits emitted by an atom coupled to an optical cavity. We show, in particular, how to generate familiar quantum information states such as W, Greenberger-Horne-Zeilinger, and cluster states within such a framework.  相似文献   

7.
For an atomic Bose-Hubbard dimer quantum control via multiphoton processes have been investigated widely. We here explore how to manipulate the many-body quantum states via single-photon resonance by treating the periodic driving as a weak perturbation. The transition probabilities up to second-order approximation are given as functions of the driving parameters, which are considerable only for the single-photon resonance case. Due to some transition matrix elements vanishing, the first-order quantum transition obeys a selection rule. The non-forbidden transitions involve states of different entanglement entropies and all (part) of the forbidden transitions relate to the entropy balances between two states for odd (even) number of particles. The results provide a new route for manipulating many-body quantum states and entanglement entropies, and controlling the atomic tunnelings of the Bose-Hubbard dimer.  相似文献   

8.
The manipulation of individual, mobile quanta is a key goal of quantum communication; to achieve this, nonlinear phenomena in open systems can play a critical role. We show theoretically that a variety of strong quantum nonlinear phenomena occur in a completely open one-dimensional waveguide coupled to an N-type four-level system. We focus on photon blockade and the creation of single-photon states in the absence of a cavity. Many-body bound states appear due to the strong photon-photon correlation mediated by the four-level system. These bound states cause photon blockade, which can generate a sub-Poissonian single-photon source.  相似文献   

9.
A tripartite single-photon state shared through noisy quantum channels is considered for three different system configurations. The quantum teleportation of a single-photon state between two parties is investigated in cases with and without the assistance of a third party. The condition that the quantum teleportation is superior to the classical one is provided in terms of the damping rate and detector efficiency.  相似文献   

10.
Remote state preparation (RSP) provides a useful way of transferring quantum information between two distant nodes based on the previously shared entanglement. In this paper, we study RSP of an arbitrary single-photon state in two degrees of freedom (DoFs). Using hyper-entanglement as a shared resource, our first goal is to remotely prepare the single-photon state in polarization and frequency DoFs and the second one is to reconstruct the single-photon state in polarization and time-bin DoFs. In the RSP process, the sender will rotate the quantum state in each DoF of the photon according to the knowledge of the state to be communicated. By performing a projective measurement on the polarization of the sender’s photon, the original single-photon state in two DoFs can be remotely reconstructed at the receiver’s quantum systems. This work demonstrates a novel capability for longdistance quantum communication.  相似文献   

11.
We derive an analytical lower bound for the concurrence of a bipartite quantum state in arbitrary dimension. A functional relation is established relating concurrence, the Peres-Horodecki criterion, and the realignment criterion. We demonstrate that our bound is exact for some mixed quantum states. The significance of our method is illustrated by giving a quantitative evaluation of entanglement for many bound entangled states, some of which fail to be identified by the usual concurrence estimation method.  相似文献   

12.
单光子纠缠态的纠缠转移和量子隐形传态   总被引:19,自引:19,他引:0  
使用光学分束器和单光子源,利用单光子态和真空态制备出了纠缠单光子态.利用光学分束器作用和单光子探测,实现了三个通讯伙伴之间的纠缠转移.提出了一个关于纠缠单光子态的量子隐形传态方案.在这个方案中,被传送的是一个未知的单光子纠缠态.通讯双方使用的量子信道是两个单光子纠缠态.通过使用分束器作用和对输出态进行光子测量以及在经典信息的帮助下,纠缠转移和量子隐形传态的过程被完成.  相似文献   

13.
An improved quantum key distribution scheme via single-photon two-qubit states is proposed. The input–output model of the polarization state is established. And the influence of the interferometers to the polarization state is analyzed. Quantum bit error rate of polarization coding caused by birefringent and coordinate system difference between incident light and the fast and slow axes in fiber interferometer is simulated. Furthermore, maintaining conditions of polarization state are given on this basis.  相似文献   

14.
A quantum key distribution protocol with information coding by the time of photon arrival based on four linearly dependent single-photon states is proposed and the resistance of the protocol to a realistic intercept-resend attack is analyzed. The protocol on four linearly independent states is shown to be sensitive to an attack with unambiguous discrimination of all states when the level of losses in the quantum channel is higher than 7.2 dB.  相似文献   

15.
We propose protocols for the entanglement swapping of distant atomic Bose-Einstein condensates using the photon entanglement states as the quantum channel. Two protocols are introduced: one is a single-photon scheme in which an entangled single-photon state serves as the quantum channel, and the other is a multi-photon scheme where an entangled coherent state of the probe lasers is used as the quantum channel.  相似文献   

16.
The proof of the security of quantum key distribution is a rather complex problem. Security is defined in terms different from the requirements imposed on keys in classical cryptography. In quantum cryptography, the security of keys is expressed in terms of the closeness of the quantum state of an eavesdropper after key distribution to an ideal quantum state that is uncorrelated to the key of legitimate users. A metric of closeness between two quantum states is given by the trace metric. In classical cryptography, the security of keys is understood in terms of, say, the complexity of key search in the presence of side information. In quantum cryptography, side information for the eavesdropper is given by the whole volume of information on keys obtained from both quantum and classical channels. The fact that the mathematical apparatuses used in the proof of key security in classical and quantum cryptography are essentially different leads to misunderstanding and emotional discussions [1]. Therefore, one should be able to answer the question of how different cryptographic robustness criteria are related to each other. In the present study, it is shown that there is a direct relationship between the security criterion in quantum cryptography, which is based on the trace distance determining the distinguishability of quantum states, and the criterion in classical cryptography, which uses guesswork on the determination of a key in the presence of side information.  相似文献   

17.
An observable criterion is derived that allows one to distinguish nonclassical states of the harmonic oscillator from those having a classical counterpart. A quantum state is shown to have no classical counterpart if and only if the characteristic functions of the quadrature distributions or the s-parametrized phase-space distributions exhibit a slower decay than for the ground state of the oscillator. This renders it possible to experimentally check the failure of the P function to be a probability measure.  相似文献   

18.
We propose a scheme for a quantum key distribution (QKD) protocol with dual-rail displaced photon states. Displaced single-photon states with different amplitudes carry bit values of code that may be extracted, while coherent states carry nothing and only provide an inconclusive outcome. A real resource of single photons is used, involving imperfections associated with experimental technique that result in a photon state with an admixture of the vacuum state. The protocol is robust against the loss of a single photon and the inefficiency of the detectors. Pulses with large amplitudes, unlike the conventional QKD relying on faint laser pulses, are used that may approximate it to standard telecommunication and may show resistance to eaves-dropping even in settings with high attenuation. Information leakage to the eavesdropper is determined from comparison of the output distributions of the outcomes with ideal ones that are defined by two additional parameters accessible to only those send the pulses. Robustness to some possible eavesdropping attacks is shown.  相似文献   

19.
We propose a scheme for long-distance quantum communication where the elementary entanglement is generated through two-photon interference and quantum swapping is performed through one-photon interference. Local “polarization” maximally entangled states of atomic ensembles are generated by absorbing a single photon from on-demand single-photon sources. This scheme is robust against phase fluctuations in the quantum channels, moreover speeds up long-distance high-fidelity entanglement generation rate.  相似文献   

20.
《Physics letters. A》1988,130(2):101-103
Squeezed states can be further squeezed if the initial squeezing is smaller than a certain amount. It is pointed out that one atom single-photon and two-photon micromasers could be used to produce squeezed state output, among which single-photon resonant two-photon micromaser may bring about relatively large output with deep squeezing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号