首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Benzyl(hydro)[70]fullerene regioisomers with the addends in both the equatorial and polar regions of C(70) have been prepared via the reaction of dianionic C(70) with benzyl bromide and H(2)O. HRMS, UV-vis, (1)H, (13)C, HMQC (heteronuclear multiple quantum coherence) and HMBC (heteronuclear multiple bond coherence) NMR characterisations have shown that the addition in the equatorial region of C(70) affords a new (PhCH(2))HC(70) regioisomer with para-positioned addends across a six-membered ring, which is different from the "polar" regioisomers where the addends have an ortho-addition pattern. (1)H NMR characterisations have shown a much stronger shielding effect for the addends in the equatorial region with respect to the counterparts in the polar region of C(70), while cyclic voltammetry study has shown a surprising positive shift for the first reduction potential of the equatorial regioisomer with respect to those of the polar regioisomer and pristine C(70), suggesting that the equatorial region of C(70) is rather electropositive than electronegative. D(2)O experiment has shown a significant difference of the deuterated product distribution between the equatorial and polar regioisomers, which can be justified by the different acidity of the (PhCH(2))HC(70) regioisomers. Computational calculations have been carried out to rationalize the formation of the C(70)HR regioisomers.  相似文献   

2.
A reinvestigation of the reaction between C60(2-) and benzyl bromide in benzonitrile containing 0.1 M tetra-n-butylammonium perchlorate (TBAP) has shown that there are more reaction products than previously reported. Use of a silica rather than a "Buckyclutcher I" column for HPLC purification led to isolation of two previously unattained products in the reaction mixture, one of which was identified as 1,2-(PhCH2)2C60 by UV-vis and NMR . The earlier incorrectly assigned 1,2-(PhCH2)2C60 was identified as the methanofullerene C61HPh by X-ray single-crystal diffraction. The electrochemistry of genuine 1,2-(PhCH2)2C60 shows that its first reduction potential in PhCN containing 0.1 M TBAP is cathodically shifted by 100 mV with respect to E1/2 for reduction of 1,4-(PhCH2)2C60, indicating that the addition pattern significantly affects the electrochemistry of derivatized C60. Visible and near-IR spectra of the monoanion and dianion of 1,2-(PhCH2)2C60 are also reported.  相似文献   

3.
The reaction of Ir4(CO)8(PMe3)4 with excess C60 in refluxing 1,2-dichlorobenzene, followed by treatment by CNR (R = CH2C6H5) at 70 degrees C, affords a fullerene-metal sandwich complex Ir4(CO)3(mu4-CH)(PMe3)2(mu-PMe2)(CNR)(mu-eta2,eta2-C60)(mu4-eta1,eta1,eta2,eta2-C60) (1), which exhibits an interesting structural feature of two metal atoms bridging the two C60 centers as well as the first example of a mu4-eta1,eta1,eta2,eta2-C60 bonding mode. Compound 1 has been characterized by NMR spectroscopy, elemental analysis, and X-ray diffraction study. A cyclic voltammetry study reveals strong electronic communication between the two C60 centers in 1, which is due to the presence of a wide channel of two metal centers between the two C60 cages for efficient electronic interaction.  相似文献   

4.
The reaction of titanium trisamidotriazacyclononane, [Ti{N(Ph)SiMe2}3tacn] (1), with C60 led to the synthesis of [Ti{N(Ph)SiMe2}3tacn]C60 (2) in high yield. Treatment of 2 with PhCH2Br led to the formation of [Ti{N(Ph)SiMe2}3tacn]Br and the radical PhCH2C60 (3). The reaction of CH3I with 1 gives two products. One is [Ti{N(Ph)SiMe2}3tacn]I (4), which results from the oxidation of 1 by an I radical. The other product, 5, resulting from a multistep reaction scheme that involves redox and nucleophilic reactions, presents an imido ligand formed by ligand rearrangement upon C-N bond cleavage. In solution, an exchange process that corresponds to a reversible 1,3-silyl shift between two Ti-bonded N atoms leads to isomers 5a and 5b. This equilibrium transforms an imido (TiNPh) into an amido ligand (Ti{NPh}SiMe2CH2Ph) with concomitant generation of an anionic moiety in the originally neutral triazacyclononane ring. In solution, either 5a or 5b displays additional fluxional processes that consist of its corresponding racemization processes.  相似文献   

5.
Regiospecific chlorocarbonylation of the polybenzyl cores PhCH2CH2Ph, C6(CH2CH2Ph)6, 7, and CH(CH2Ph)24-1,2,4,5-C6H2, 8, in the para position of the benzyl groups gives the chlorocarbonyl derivatives 2, 9, and 10, respectively, in good yields. The octachlorocarbonyl derivative 10 reacts with Newkome's aminotripod NH2C(CH2OCH2CH2CN)3 to give the 24-nitrile dendrimer 13 which is characterized by its molecular peak in the MALDI TOF mass spectrum and with (5-aminopentyl)-1-ferrocene to give the octaferrocene complex 14. Reactions of 2, 9, and 10 with sodium methanolate in methanol gives the methyl esters 3, 15, and 16 which are reduced by LiAlH4 to the primary alcohols 4, 17, and 18; reactions of these alcohols with NaI and BF3.Et2O yield the iodomethyl derivatives 5, 19, and 20. The organoiron nucleophile [FeIICp(eta 5-C6Me5CH2)], 1, reacts with 5, 19, and 20 leading to C-C bond formation and recovery of the aromatic structure of the ligand. This reaction with 5 yields a soluble complex, [FeIICp(eta 6-C6Me5CH2CH2C6H4CH2-)]2, 6, in which the two redox groups, separated by 14 carbon atoms, are independent, being reversibly reduced at approximately the same potential in an overall two-electron wave recorded by cyclic voltammetry. The analogous reaction with 19 and 20, however, gave almost insoluble hexa- and octa-iron complexes 21 and 22 with mediocre purities.  相似文献   

6.
Fullerene cyclopentadienide (PhCH(2))(2)Ph(3)C(60)(-) and indenide (PhCH(2))(2)PhC(60)(-), each bearing two different organic groups, were efficiently synthesized through regioselective reactions of 1,4-(PhCH(2))(2)C(60) with an organocopper reagent (PhMgBr/CuBr.SMe(2)) or a Grignard reagent (PhMgBr) followed by deprotonation with KO(t)()Bu.  相似文献   

7.
Aerobic oxidations of dianionic C(60) were examined in PhCN and PhCH(2)CN, where dioxygen was activated to O(2)(?-) via the single-electron transfer from C(60)(2-) and underwent oxygenation and dehydrogenation reactions, respectively. Addition of PhCH(2)Br led to further benzylation for the oxygenated product but not for the dehydrogenated one, suggesting that the initial two negative charges were preserved for the intermediates of the oxygenation reaction but not for those of the dehydrogenation reaction.  相似文献   

8.
马春林  李凤 《中国化学》2003,21(2):146-152
Three distannoxane dimers[(PhCH2)2(Cl)SnOSn(X)(CH2Ph)2]2(X=Cl,OMe,OEt)were prepared by the hydrolytic reaction of (PhCH2)2SnCl2 with sodium alkoxides.The compounds are assigned tetranuclear distannoxane structures in solid state.which contain the so-called ladder arrangement with a central planar Sn2O2 four-membered ring.The endo-and exo-cyclic Sn atoms are both five-coordinate,and have distorted trigonal bipyramidal geometries.A variety of hydrolyses of(PhCH2)2SnCl2 were performed and these dimers were characterized by IR,^1H NMR spectroscopy and X-ray diffraction analysis.  相似文献   

9.
Li ZJ  Li FF  Li SH  Chang WW  Yang WW  Gao X 《Organic letters》2012,14(13):3482-3485
Multiadditions of heteroaddends to C(60) are achieved via the oxazolination reaction of 1,4-(PhCH(2))(2)C(60) with OH(-) and PhCN, which exhibit a unique regioselectivity regarding the addition sites of the heteroatoms.  相似文献   

10.
Two-electron reduction of penta(organo)[60]fullerenes C(60)Ar(5)H (Ar = Ph and biphenyl) by potassium/mercury amalgam afforded potassium complexes of the corresponding open-shell radical dianions [K+(thf)n]2[C60Ar5(2-.)]. These compounds were characterized by UV-visible-near-IR and electron spin resonance spectroscopy in solution. Anaerobic crystallization of [K+(thf)n]2[C60(biphenyl)(5)(2-.)] that exists largely as a monomer in solution gave black crystals of its dimer [K+(thf)3]4[(biphenyl)5C60-C60(biphenyl)5(4-)], in which the two fullerene units are connected by a C-C single bond [1.577(11) A] as determined by X-ray diffraction. Three-electron reduction of C60Ar5H with metallic potassium gave a black-green trianion [K+(thf)n]3[C60Ar5(3-)]. The reaction of the trianion with an alkyl halide RBr (R = PhCH(2) and Ph(2)CH) regioselectively afforded a hepta-organofullerene C60Ar5R2H, from which a potassium complex [K+(thf)n][C60(biphenyl)5(CH2Ph)(2)(-)] and a palladium complex Pd[C60(biphenyl)5(CH2Ph)2](pi-methallyl) as well as octa-organofullerene compounds C60(biphenyl)5(CH2Ph)3H2 and Ru[C60(biphenyl)5(C2Ph)3H]Cp were synthesized. These compounds possess a dibenzo-fused corannulene pi-electron conjugated system and are luminescent.  相似文献   

11.
Treatment of C70 with cycloalkylaminomethylenebisphosphonates in the presence of NaH gave corresponding C70 dimers 1 in good yield, while the methanofullerenes, C70>CH(PO3Et2) (3) and C70>C(PO3Et2)2 (4) or C60>CH(PO3Et2) (5) and C60>C(PO3Et2)2 (6), were obtained, respectively, by the reaction of C70 or C60 with tetraethyl methylenediphosphonate in the presence of NaH. Diethyl cyanomethylphosphonate reacted with C60 or C70 under similar conditions to afford C60>C(PO3Et2)CN (7) and C70>C(PO3Et2)CN (8). Furthermore, the presence of weak electronic interactions between two fullerene cages of fullerene dimers was demonstrated by cyclic voltammetry. A radical mechanism was proposed for the formation of the fullerene derivatives on the basis of the ESR studies.  相似文献   

12.
Heating a mixture of Ir(4)(CO)(9)(PPh(3))(3) (1) and 2 equiv of C(60) in refluxing chlorobenzene (CB) affords a "butterfly" tetrairidium-C(60) complex Ir(4)(CO)(6){mu(3)-kappa(3)-PPh(2)(o-C(6)H(4))P(o-C(6)H(4))PPh(eta(1)-o-C(6)H(4))}(mu(3)-eta(2):eta(2):eta(2)-C(60)) (3, 36%). Brief thermolysis of 1 in refluxing chlorobenzene (CB) gives a "butterfly" complex Ir(4)(CO)(8){mu-k(2)-PPh(2)(o-C(6)H(4))PPh}{mu(3)-PPh(2)(eta(1):eta(2)-o-C(6)H(4))} (2, 64%) that is both ortho-phosphorylated and ortho-metalated. Interestingly, reaction of 2 with 2 equiv of C(60) in refluxing CB produces 3 (41%) by C(60)-assisted ortho-phosphorylation, indicating that 2 is the reaction intermediate for the final product 3. On the other hand, reaction of Ir(4)(CO)(8)(PMe(3))(4) (4) with excess (4 equiv) C(60) in refluxing 1,2-dichlorobenzene, followed by treatment with CNCH(2)Ph at 70 degrees C, affords a square-planar complex with two C(60) ligands and a face-capping methylidyne ligand, Ir(4)(CO)(3)(mu(4)-CH)(PMe(3))(2)(mu-PMe(2))(CNCH(2)Ph)(mu-eta(2):eta(2)-C(60))(mu(4)-eta(1):eta(1):eta(2):eta(2)-C(60)) (5, 13%) as the major product. Compounds 2, 3, and 5 have been characterized by spectroscopic and microanalytical methods, as well as by single-crystal X-ray diffraction studies. Cyclic voltammetry has been used to examine the electrochemical properties of 2, 3, 5, and a related known "butterfly" complex Ir(4)(CO)(6)(mu-CO){mu(3)-k(2)-PPh(2)(o-C(6)H(4))P(eta(1)-o-C(6)H(4))}(mu(3)-eta(2):eta(2):eta(2)-C(60)) (6). These cyclic voltammetry data suggest that a C(60)-mediated electron transfer to the iridium cluster center takes place for the species 3(3)(-) and 6(2)(-) in compounds 3 and 6. The cyclic voltammogram of 5 exhibits six well-separated reversible, one-electron redox waves due to the strong electronic communication between two C(60) cages through a tetrairidium metal cluster spacer. The electrochemical properties of 3, 5, and 6 have been rationalized by molecular orbital calculations using density functional theory and by charge distribution studies employing the Mulliken and Hirshfeld population analyses.  相似文献   

13.
Chang WW  Li ZJ  Yang WW  Gao X 《Organic letters》2012,14(9):2386-2389
Reactions of C(60) with oxygen nucleophiles of HO(-) and CH(3)O(-) are revisited in PhCN in the presence of PhCH(2)Br. Different from previous results that such reactions lead to the formation of complex mixtures, well-structured C(60) oxazolines are obtained when HO(-) is involved, while di- and tetraadducts with methoxy and benzyl addends are obtained when CH(3)O(-) is engaged. The reactions are followed by in situ vis-near-IR spectroscopy, which reveals further information for the reactions.  相似文献   

14.
The ligated benzonitriles in the platinum(II) complex [PtCl2(PhCN)2] undergo metal-mediated [2 + 3] cycloaddition with nitrones -ON+(R3)=C(R1)(R2) [R1/R2/R3 = H/Ph/Me, H/p-MeC6H4/Me, H/Ph/CH2Ph] to give delta 4-1,2,4-oxadiazoline complexes, [PtCl2(N=C(Ph)O-N(R3)-C(R1)(R2))2] (2a, 4a, 6a), as a 1:1 mixture of two diastereoisomers, in 60-75% yields, while [PtCl2(MeCN)2] is inactive toward the addition. However, a strong activation of acetonitrile was reached by application of the platinum(IV) complex [PtCl4(MeCN)2] and both [PtCl4(RCN)2] (R = Me, Ph) react smoothly with various nitrones to give [PtCl4(N=C(R)O-N(R3)-C(R1)(R2))2] (1b-6b). The latter were reduced to the corresponding platinum(II) complexes [PtCl2(N=C(R)O-N(R3)-C(R1)(R2))2] (1a-6a) by treatment with PhCH2NHOH, while the reverse reaction, i.e. conversion of 1a-6a to 1b-6b, was achieved by chlorination with Cl2. The diastereoisomers of [PtCl2(N=C(R)O-N(R3)-C(R1)(R2))2] (1a-6a) exhibit different kinetic labilities, and liberation of the delta 4-1,2,4-oxadiazolines by substitution with 1,2-bis(diphenylphosphino)ethane (dppe) in CDCl3 proceeds at different reaction rates to give free N=C(R)O-N(R3)-C(R1)(R2) and [PtCl2(dppe)] in almost quantitative NMR yield. All prepared compounds were characterized by elemental analyses, FAB mass spectrometry, and IR and 1H, 13C(1H), and 195Pt (metal complexes) NMR spectroscopies; X-ray structure determination of the first (delta 4-1,2,4-oxadiazoline)Pt(II) complexes was performed for (S,S)/(R,R)-rac-[PtCl2(N=C(Me)O-N(Me)-C(H)Ph)2] (1a) (a = 9.3562(4), b = 9.8046(3), c = 13.1146(5) A; alpha = 76.155(2), beta = 83.421(2), gamma = 73.285(2) degrees; V = 1117.39(7) A3; triclinic, P1, Z = 2), (R,S)-meso-[PtCl2(N=C(Ph)O-N(Me)-C(H)Ph)2] (2a) (a = 8.9689(9), b = 9.1365(5), c = 10.1846(10) A; alpha = 64.328(6), beta = 72.532(4), gamma = 67.744(6) degrees; V = 686.82(11) A3; triclinic, P1, Z = 1), (S,S)/(R,R)-rac-[PtCl2(N=C(Me)O-N(Me)-C(H)(p-C6H4Me))2] (3a) (a = 11.6378(2), b = 19.0767(7), c = 11.5782(4) A; beta = 111.062(2) degrees; V = 2398.76(13) A3; monoclinic, P2(1)/c, Z = 4), and (S,S)/(R,R)-rac-[PtCl2(N=C(Me)O-N(CH2Ph)-C(H)Ph2] (5a) (a = 10.664(2), b = 10.879(2), c = 14.388(3) A; alpha = 73.11(3), beta = 78.30(3), gamma = 88.88(3) degrees; V = 1562.6(6) A3; triclinic, P1, Z = 2).  相似文献   

15.
Products of the reaction of nido-1,2-(CpRuH)(2)B(3)H(7), 1, and phenylacetylene demonstrate the ways in which cluster metal and main group fragments can combine with an alkyne. Observed at 22 degrees C are (a) reduction to mu-alkylidene Ru-B bridges (isomers nido-1,2-(CpRu)(2)(1,5-mu-C{Ph}Me)B(3)H(7), 2, and nido-1,2-(CpRu)(2)(1,5-mu-C{CH(2)Ph}H)B(3)H(7), 3), (b) reduction to exo-cluster alkyl substituents on boron (nido-1,2-(CpRuH)(2)-3-CH(2)CH(2)Ph-B(3)H(6), 4), (c) cluster insertion with extrusion of a BH(2) fragment into an exo-cluster bridge (nido-1,2-(CpRu)(2)(mu-H)(mu-BH(2))-4-or-5-Ph-4,5-C(2)B(2)H(5), 5), (d) combined insertion with BH(2) extrusion and reduction (nido-1,2-(CpRu)(2)(mu-H)(mu-BH(2))-3-CH(2)CH(2)Ph-5-Ph-4,5-C(2)B(2)H(4), 6), (e) insertion and loss of borane with and without reduction (nido-1,2-(CpRu)(2)-5-Ph-4,5-C(2)B(2)H(7), 7, and isomers nido-1,2-(CpRu)(2)-3-CH(2)CH(2)Ph-4-(and-5-)Ph-C(2)B(2)H(6), 8 and 9), and (f) insertion and borane loss plus reduction (nido-1,2-(CpRu)(2)-3-(trans-CH=CHPh)-5-Ph-4,5-C(2)B(2)H(6), 10). Along with 7, 8, and 10, the reaction at 90 degrees C generates products of insertion and nido- to closo-cluster closure (closo-4-Ph-1,2-(CpRuH)(2)-4,6-C(2)B(2)H(3), 11, closo-1,2-(CpRuH)(2)-3-CH(2)CH(2)Ph-5-Ph-7-CH(2)CH(2)Ph-4,5-C(2)B(3)H(2), 12, closo-1,2-(CpRuH)(2)-5-Ph-4,5-C(2)B(3)H(4), 13, and isomers closo-1,2-(CpRuH)(2)-3-and-7-CH(2)CH(2)Ph-5-Ph-4,5-C(2)B(3)H(3), 14 and 15). The clusters with an exo-cluster bridging BH(2) groups are shown to be intermediates by demonstrating that the major products 5 and 6 rearrange to 13 and convert to 14, respectively. 14 then isomerizes to 15, thus connecting low- and high-temperature products. Finally, all available information shows that the high reactivity of 1 with alkynes can be associated with the "extra" two Ru-H hydrides on the framework of 1 which are required to meet the nido-cluster electron count.  相似文献   

16.
The stirring of [ortho-(HC[triple bond]C)-C(5)H(4)N] with [nido-B(10)H(14)] in benzene affords [6,9-{ortho-(HC[triple bond]C)-C(5)H(4)N}(2)-arachno-B(10)H(12)] 1 in 93% yield. In the solid state, 1 has an extended complex three-dimensional structure involving intramolecular dihydrogen bonding, which accounts for its low solubility. Thermolysis of 1 gives the known [1-(ortho-C(5)H(4)N)-1,2-closo-C(2)B(10)H(11)] 2 (13%), together with new [micro-5(N),6(C)-(NC(5)H(4)-ortho-CH(2))-nido-6-CB(9)H(10)] 3 (0.4%), [micro-7(C),8(N)-(NC(5)H(4)-ortho-CH(2))-nido-7-CB(10)H(11)] (0.4%) , 4 binuclear [endo-6'-(closo-1,2-C(2)B(10)H(10))-micro-(1(C),exo-6'(N))-(ortho-C(5)H(4)N)-micro-(exo-8'(C),exo-9'(N))-(ortho-(CH(2)CH(2))-C(5)H(4)N)-arachno-B(10)H(10)] (0.5%) 5, and [exo-6(C)-endo-6(N)-(ortho-(CH[double bond]CH)-C(5)H(4)N)-exo-9(N)-(ortho-(HC[triple bond]C)-C(5)H(4)N)-arachno-B(10)H(11)] 6. An improved solvent-free route to 2 is also presented. This set of compounds features an increasing cluster incorporation of the ethynyl moiety, initially by an effective internal hydroboration, affording an arachno to nido and then a nido to arachno:closo sequence of cluster geometry. An alternative low-temperature route to internal hydroboration is demonstrated in the room temperature reaction of [closo-B(11)H(11)][N(n)Bu(4)](2) with CF(3)COOH and [ortho-(HC[triple bond]C)-C(5)H(4)N], which gives [micro-1(C),2(B)-[ortho-C(5)H(4)N-CH(2)]-closo-1-CB(11)H(10)] 7 (40%) in which one carbon atom is incorporated into the cluster; a similar reaction with [ortho-(N[triple bond]C)-C(5)H(4)N] affords [N(n)Bu(4)][7-(ortho-N[triple bond]C-C(5)H(4)N)-nido-B(11)H(12)], 8 (68%) and stirring [ortho-(N[triple bond]C)-C(5)H(4)N] with [nido-B(10)H(14)] quantitatively affords the cyano analogue of 1, [6,9-{ortho-(N[triple bond]C)-C(5)H(4)N}(2)-arachno-B(10)H(12)] 9. All compounds were characterised by single-crystal X-ray diffraction analysis and NMR spectroscopy.  相似文献   

17.
Novel carbon bridged fullerene dimers (HC60-CR2-C60H type) are obtained in high yield by the reaction of aminomethylenebis(phosphonate) anions with [60]fullerene.  相似文献   

18.
Lithium complexes bearing mono-anionic aminophenolate ligands are described. Reactions of ligand precursors HON(Me)Ph(OMe), HON(Me)Ph(SMe), HON(Me)C(OMe) or HON(Me)C(NMe2) [HON(Me)Ph(OMe) = (2-OMeC6H4CH2)N(Me)(CH2-2-HO-3,5-C6H2((t)Bu)2); HON(Me)Ph(SMe)= (2-SMe-C6H4CH2)N(Me)(CH2-2-HO-3,5-C6H2((t)Bu)2); HON(Me)C(OMe) = (MeOCH(2)CH2)N(Me)(CH2-2-HO-3,5-C6H2((t)Bu)2); HON(Me)C(NMe2) = (Me2NCH2CH2)N(Me)(CH2-2-HO-3,5-C6H2((t)Bu)2)] with 1.1-1.3 molar equivalents of (n)BuLi in diethyl ether solution afford (LiON(Me)Ph(OMe))(2) (3), (LiON(Me)Ph(SMe))2 (4), (LiON(Me)C(OMe))2 (5) and (LiON(Me)C(NMe2))2 (6) as dinuclear lithium complexes. The BnOH adduct of , (BnOH)(LiON(Me)C(OMe)) (7), was prepared from the reaction of and BnOH in diethyl ether solution. The molecular structures are reported for ligand precursor HON(Me)Ph(SMe) and compounds 3-5 and 7. These dinuclear lithium complexes show excellent catalytic activities toward the ring-opening polymerization of L-lactide in the presence of benzyl alcohol.  相似文献   

19.
The reaction of the C=N bond in PhCH=NPh with the carbanionic species Ph2PCH2-, leading to the N-phenyl beta-aminophosphine Ph2PCH2CH(Ph)NHPh, L1, is described. This molecule reacts with different organic electrophiles to afford related compounds Ph2PCH2CH(Ph)NPhX (X = SiMe3, L2; COPh, L4), [Ph2MePCH2CH(Ph)NHPh]+(I-), L3, and [Ph2PCH2CH(Ph)N(Ph)CO]2, L5, containing two amido and two phosphino functions. The coordination properties of L1, L2, and L4 have been studied in palladium chemistry. The X-ray structure of [PdCl2(Ph2PCH2CH(Ph)NHPh-kappaP,kappaN)] shows the bidentate coordination mode for the L1 ligand with equatorial C(Ph)-N(Ph) phenyl groups. [PdCl2(Ph2PCH2CH(Ph)NHPh-kappaP,kappaN)] crystallizes at 298 K in the space group P2(1)/n with cell parameters a = 10.689(2) A, b = 21.345(3) A, c = 12.282(2) A, beta = 90.294(12) degrees, Z = 4, D(calcd) = 1.526. The reaction between 2 equiv of L1 and [PdCl(eta3-C3H5)]2 affords the [PdCl(eta3-C3H5)(Ph2PCH2CH(Ph)NHPh-kappaP)] complex in which an unexpected N-H.Cl intramolecular interaction has been observed by an X-ray diffraction analysis. [PdCl(eta3-C3H5)(Ph2PCH2CH(Ph)NHPh-kappaP)] crystallizes at 298 K in the monoclinic space group Cc with cell parameters a = 10.912(1) A, b = 17.194(2) A, c = 14.169(2) A, beta = 100.651(9) degrees, Z = 4, D(calcd) = 1.435. Neutral and cationic alkyl or allyl palladium chloride complexes containing L1 are also reported as well as a neutral allyl palladium chloride complex containing L4. Variable-temperature 31P[1H] NMR studies on the allyl complexes show that the eta3/eta1 allyl interconversion is enhanced by a positive charge and also by a N-H.Cl intramolecular interaction.  相似文献   

20.
A new high-yield synthesis of [(PhCH(2))(2)Mg(thf)(2)] and [[(PhCH(2))CH(3)Mg(thf)](2)] via benzylpotassium has allowed a simple entry into benzylmagnesium coordination chemistry. The syntheses and X-ray crystal structures of both [(eta(2)-Me(2)NCH(2)CH(2)NMe(2))Mg(CH(2)Ph)(2)] and [eta(2)-HC[C(CH(3))NAr'](2)Mg(CH(2)Ph)(thf)] (Ar'=2,6-diisopropylphenyl) are reported. The latter beta-diketiminate complex reacts with dioxygen to provide a 1:2 mixture of dimeric benzylperoxo and benzyloxo complexes. The benzylperoxo complex [[eta(2)-HC[C(CH(3))NAr'](2)Mg(mu-eta(2):eta(1)-OOCH(2)Ph)](2)] is the first example of a structurally characterised Group 2 metal-alkylperoxo complex and contains the benzylperoxo ligands in an unusual mu-eta(2):eta(1)-coordination mode, linking the two five-coordinate magnesium centres. The O[bond]O separation in the benzylperoxo ligands is 1.44(2) A. Reaction of the benzylperoxo/benzyloxo complex mixture with further [eta(2)-HC[C(CH(3))NAr'](2)Mg(CH(2)Ph)(thf)] results in complete conversion of the benzylperoxo species into the benzyloxo complex. This reaction, therefore, establishes the cleavage of dioxygen by this system as a two-step process that involves initial oxygen insertion into the Mg[bond]CH(2)Ph bond followed by O[bond]O/Mg[bond]C sigma-bond metathesis of the resulting benzylperoxo ligand with a second Mg[bond]CH(2)Ph bond. The formation of a 1:2 mixture of the benzylperoxo and benzyloxo species indicates that the rate of the insertion is faster than that of the metathesis, and this is shown to be consistent with a radical mechanism for the insertion process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号