首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Direct numerical simulations of an axisymmetric jet with off-source volumetric heat addition are presented in this paper. The system solved here involves a three-way coupling between velocity, concentration and temperature. The computations are performed on a spherical coordinate system, and application of a traction free boundary condition at the lateral edges allows physical entrainment into the computational domain. The Reynolds and Richardson numbers based on local scales employed in the simulations are 1000 and 12 respectively. A strong effect of heat addition on the jet is apparent. Heating causes acceleration of the jet, and an increased dilution due to an increase in entrainment. Further, the streamwise velocity profile is distorted, and the cross-stream velocity is inward for all radial locations for the heated jet. Interestingly, the maximum temperature is realized off-axis and a short distance upstream of the exit of the heat injection zone (HIZ). The temperature width is intermediate between the scalar and velocity widths in the HIZ. Normalized rms of the concentration and temperature increases in the HIZ, whereas that of streamwise, cross-stream and tangential velocities increases rapidly after decreasing. Both mass flux and entrainment are larger for the heated jet as compared to their unheated counterparts. The buoyancy flux increases monotonically in the HIZ, and subsequently remains constant.  相似文献   

2.
Direct numerical simulations of 2D driven cavity flows have been performed. The simulations exhibit that the flow converges to a periodically oscillating state at Re=11,000, and reveal that the dynamics is chaotic at Re=22,000. The dimension of the attractor and the Kolmogorov entropy have been computed. Explicit time-integration techniques are discussed.  相似文献   

3.
In the present study, direct numerical simulations (DNS) are performed on single and a swarm of particles settling under the action of gravity. The simulations have been carried out in the creeping flow range of Reynolds number from 0.01 to 1 for understanding the hindrance effect, of the other particles, on the settling velocity and drag coefficient. The DNS code is a non-Lagrange multiplier-based fictitious-domain method, which has been developed and validated by Jin et al. (2008 Jin, S. A parallel algorithm for the direct numerical simulation of 3D inertial particle sedimentation. Conference proceedings of the 16th annual conference of the CFD Society of Canada. Edited by: Bergstrom, D. J. and Spiteri, R. 9–11, June. Saskatoon, Saskatchewan, , Canada [Google Scholar]; A parallel algorithm for the direct numerical simulation of 3D inertial particle sedimentation. In: Conference proceedings of the 16th annual conference of the CFD Society of Canada). It has been observed that the time averaged settling velocity of the particle in the presence of other particles, decreases with an increase in the number of particles surrounding it (from 9 particles to 245 particles). The effect of the particle volume fraction on the drag coefficient has also been studied and it has been observed that the computed values of drag coefficients are in good agreement with the correlations proposed by Richardson and Zaki (1954 Richardson, J. F. and Zaki, W. N. 1954. Sedimentation and fluidization: part I. Transactions of the Institution of Chemical Engineers, 32: 3553.  [Google Scholar]; Sedimentation and fluidization: part I. Transactions of the Institution of Chemical Engineers, 32, 35–53) and Pandit and Joshi (1998 Pandit, A. B. and Joshi, J. B. 1998. Pressure drop in packed, expanded and fluidized beds, packed columns and static mixers – a unified approach. Reviews in Chemical Engineering, 14: 321371. [Crossref], [Web of Science ®] [Google Scholar]; Pressure drop in packed, expanded and fluidised beds, packed columns and static mixers – a unified approach. Reviews in Chemical Engineering, 14, 321–371). The suspension viscosity-based model of Frankel and Acrivos (1967 Frankel, N. A. and Acrivos, A. 1967. On the viscosity of a concentrated suspension of solid spheres. Chemical Engineering Science, 22: 847853. [Crossref], [Web of Science ®] [Google Scholar]; On the viscosity of a concentrated suspension of solid spheres. Chemical Engineering Science, 22, 847–853) shows good agreement with the DNS results.  相似文献   

4.
The direct numerical simulation (DNS) of the Taylor–Couette flow in the fully turbulent regime is described. The numerical method extends the work by Quadrio and Luchini [M. Quadrio, P. Luchini, Eur. J. Mech. B/Fluids 21 (2002) 413–427], and is based on a parallel computer code which uses mixed spatial discretization (spectral schemes in the homogeneous directions, and fourth-order, compact explicit finite-difference schemes in the radial direction). A DNS is carried out to simulate for the first time the turbulent Taylor–Couette flow in the turbulent regime. Statistical quantities are computed to complement the existing experimental information, with a view to compare it to planar, pressure-driven turbulent flow at the same value of the Reynolds number. The main source for differences in flow statistics between plane and curved-wall flows is attributed to the presence of large-scale rotating structures generated by curvature effects.  相似文献   

5.
A numerical simulation of a rectangular surface jet is performed at a Reynolds number of Rej=4400. The global parameters of the jet e.g. maximum velocity decay, jet surface normal and lateral spread rates, entrainment, jet momentum flux and turbulent momentum flux are in agreement with several other studies reported in the literature. It is shown that the mean velocity and Reynolds stress profiles scale with the maximum local streamwise velocity and jet half width in the surface normal and lateral directions. The current simulation provides balance, explicitly calculated budgets for the turbulence kinetic energy, Reynolds normal and shear stresses. The surface jet develops a thin layer of fast moving fluid in the lateral direction near the surface. This layer is called the ‘surface current’. It has been suggested that the surface current arises due to the Reynolds stress anisotropy in the near surface region. The current study shows that this explanation is incomplete. The turbulence production for the Reynolds stress in the lateral direction is negative, which can drive the mean flow in the lateral direction. The higher level of negative production in the near surface region is responsible for the development of the surface current.  相似文献   

6.
Fully developed turbulent flow and heat transfer in a concentric annular duct is investigated for the first time by using a direct numerical simulation (DNS) with isoflux conditions imposed at both walls. The Reynolds number based on the half-width between inner and outer walls, δ=(r2-r1)/2, and the laminar maximum velocity is Reδ=3500. A Prandtl number Pr=0.71 and a radius ratio r*=0.1 were retained. The main objective of this work is to examine the effect of the heat flux density ratio, q*=q1/q2, on different thermal statistics (mean temperature profiles, root mean square (rms) of temperature fluctuations, turbulent heat fluxes, heat transfer, etc.). To validate the present DNS calculations, predictions of the flow and thermal fields with q*=1 are compared to results recently reported in the archival literature. A good agreement with available DNS data is shown. The effect of heat flux ratio q* on turbulent thermal statistics in annular duct with arbitrarily prescribed heat flux is discussed then. This investigation highlights that heat flux ratio has a marked influence on the thermal field. When q* varies from 0 to 0.01, the rms of temperature fluctuations and the turbulent heat fluxes are more intense near the outer wall while changes in q* from 1 to 100, lead to opposite trends.  相似文献   

7.
Vortical structures formed in evolving jets are important in applications such as fuel injection in diesel engines and fuel leaks. When the jet fluid is different from the ambient fluid, the buoyancy can play an important role in determining the jet flow structure, and hence, the entrainment and fluid mixing processes. In the present study, a jet of helium injected in air is investigated, with emphasis placed on delineating the buoyancy effects on vector–scalar fields during the starting phase. We utilize a computational model, previously validated to predict the flow field of low-density gas jets. The model incorporates finite volume approach to solve the transport equation of helium mass fraction coupled with conservation equations of mixture mass and momentum. Computations were performed for a laminar jet to characterize the advancing jet front, and to capture the formation and propagation of vortex rings and the related pinch-off process. Results show significant effects of buoyancy on jet advancement, as well as on vorticity and helium concentration in the core of the vortex rings.  相似文献   

8.
Numerical solutions are presented for fully developed laminar flow for a modified power law fluid (MPL) in a rectangular duct. The solutions are applicable to pseudoplastic fluids over a wide shear rate range from Newtonian behavior at low shear rates, through a transition region, to power law behavior at higher shear rates. The analysis identified a dimensionless shear rate parameter which, for a given set of operating conditions, specifies where in the shear rate range a particular system is operating, i.e. in the Newtonian, transition, or power law regions. The numerical results of the friction factor times Reynolds number for the Newtonian and power law region are compared with previously published results showing agreement within 0.05% in the Newtonian region, and 0.9% and 5.1% in the power law region. Rheological flow curves were measured for three CMC-7H4 solutions and were found to be well represented by the MPL constitutive equation. The friction factor times Reynolds number values were measured in the transition region for which previous measurements were unavailable. Good agreement was found between experiment and calculation thus confirming the validity of the analysis.  相似文献   

9.
Role of the smallest diffusive scales of a passive scalar field in the near-wall turbulent flow was examined with pseudo-spectral numerical simulations. Temperature fields were analyzed at friction Reynolds number Re τ=171 and at Prandtl numbers, Pr=1 and Pr=5.4. Results of direct numerical simulations (DNS) were compared with the under-resolved simulations where the velocity field was still resolved with the DNS accuracy, while a coarser grid was used to describe the temperature fields. Since the smallest temperature scales remained unresolved in these simulations, an appropriate spectral turbulent thermal diffusivity was applied to avoid pile-up at the higher wave numbers. In spite of coarser numerical grids, the temperature fields are still highly correlated with the DNS results, including instantaneous temperature fields. Results point to practically negligible role of the diffusive temperature scales on the macroscopic behavior of the turbulent heat transfer.  相似文献   

10.
Direct numerical simulation of compressible turbulent flows   总被引:3,自引:0,他引:3       下载免费PDF全文
This paper reviews the authors' recent studies on compressible turbulence by using direct numerical simulation (DNS),including DNS of isotropic(decaying) turbulence, turbulent mixing-layer,turbulent boundary-layer and shock/boundary-layer interaction.Turbulence statistics, compressibility effects,turbulent kinetic energy budget and coherent structures are studied based on the DNS data.The mechanism of sound source in turbulent flows is also analyzed. It shows that DNS is a powerful tool for the mechanistic study of compressible turbulence.  相似文献   

11.
This study investigates the Lagrangian acceleration and velocity of fluid particles in swirling flows via direct numerical simulation. The intermittency characteristics of acceleration and velocity of fluid particles are investigated at different swirl numbers and Reynolds numbers. The flatness factor and trajectory curvature are used to analyse the effect of Lagrangian intermittency. The joint probability density function of Lagrangian acceleration and turbulence intensity is shown to explain the augmentation effect of Lagrangian intermittency by the strongly swirling levels under the relatively low intensity of turbulence. In addition, the correlation between the Lagrangian acceleration and the turbulence intensity is enhanced as the swirl level increases. It shows the important effect of swirl on the motion behaviour of fluid particles in the strongly swirling flows.  相似文献   

12.
Fully developed turbulent pipe flow at low Re-number is studied by means of direct numerical simulation (DNS). In contrast to many previous DNS's of turbulent flows in rectangular geometries, the present DNS code, developed for a cylindrical geometry, is based on the finite volume technique rather than being based on a spectral method. The statistical results are compared with experimental data obtained with two different experimental techniques. The agreement between numerical and experimental results is found to be good which indicates that the present DNS code is suited for this kind of numerical simulations.  相似文献   

13.
Whereas Large Eddy Simulation (LES) of single-phase flows is already widely used in the CFD world, even for industrial applications, LES of two-phase interfacial flows, i.e. two-phase flows where an interface separates liquid and gas phases, still remains a challenging task. The main issue is the development of subgrid scale models well suited for two-phase interfacial flows. The aim of this work is to generate a detailed data base from direct numerical simulation (DNS) of two-phase interfacial flows in order to clearly understand interactions between small turbulent scales and the interface separating the two phases. This work is a first contribution in the study of the interface/turbulence interaction in the configuration where the interface is widely deformed and where both phases are resolved by DNS. To do this, the interaction between an initially plane interface and a freely decaying homogeneous isotropic turbulence (HIT) is studied. The densities and viscosities are the same for both phases in order to focus on the effect of the surface tension coefficient. Comparisons with existing theories built on wall-bounded or free-surface turbulence are carried out. To understand energy transfers between the interfacial energy and the turbulent one, PDFs of the droplet sizes distribution are calculated. An energy budget is carried out and turbulent statistics are performed including the distance to the interface as a parameter. A spectral analysis is achieved to highlight the energy transfer between turbulent scales of different sizes. The originality of this work is the study of the interface/turbulence interactions in the case of a widely deformed interface evolving in a turbulent flow.  相似文献   

14.
The results of a numerical study of the laminar-turbulent transition in unsteady isothermal three-dimensional flows of viscous incompressible fluid in a thick spherical layer between counter-rotating spherical boundaries are presented. The calculations are performed for the governing parameters corresponding to the experimental data [1, 2]. The numerical investigations include both solving the complete system of Navier-Stokes equations and analyzing the linear stability of steady-state axisymmetric flows with respect to three-dimensional disturbances. A stochastic flow regime is calculated for the first time. The limits of existence of different flow regimes and the hysteresis regions are found. The spatial flow patterns and frequency characteristics are obtained, which makes it possible to extend and refine the existing experimental data.  相似文献   

15.
The design and operational characteristics of a 12-sensor hot wire probe for three-dimensional velocity–vorticity measurements in turbulent flow fields is described and discussed. The performance of the probe is investigated in comparison with X-sensor probe measurements in the near field of a rectangular turbulent jet with aspect ratio 6. Measurements have been conducted at Reynolds number Re D = 21,000 at nozzle distances of x/D = 1, 3, 6 and 11, where D is the width of the nozzle. The results obtained with the 12-sensor probe compare well to the results of the X-sensor probe. Distributions of mean and fluctuating velocity–vorticity fields are presented and discussed. Among the results the most prominent is the experimental confirmation of the high levels of fluctuating vorticity in the shear layers.  相似文献   

16.
A direct numerical simulation (DNS) is applied to a particle-laden turbulent mixing layer with a chemical reaction, and the effects of particles on turbulence and chemical species’ diffusion and reaction in both zero and finite gravity cases are investigated. Unreactive particles, whose response time, τP, is smaller than the Kolmogorov time scale, τK [τP/τK = O(10−1)], are uniformly injected into the high-speed side of the mixing layer. Two reactive chemical species are separately introduced through different sides. The results show that although laden particles generally depress turbulent intensities, they begin to enhance turbulent intensities downstream as the particle size decreases provided that the inlet particle volume fraction is fixed. This is because that the small particles with small particle response time easily accumulate at the circumference of coherent vortices and act to suppress the growth of primitive small-scale coherent vortices upstream but enhance that of relatively developing large-scale ones downstream. Also, since the small-scale turbulence, which promotes the chemical reaction, is suppressed by the laden particles in the entire region, chemical product decreases overall. Furthermore, the presence of finite gravity on the particles acts to depress the turbulent intensities, but its effects on chemical species’ diffusion and reaction are quite small.  相似文献   

17.
Our works on the fictitious domain method for the direct numerical simulation of particulate flows are reviewed, and particularly our recent progresses in the simulations of the motion of particles in Poiseuille flow at moderately high Reynolds numbers are reported. The method is briefly described, and its capability to simulate the motion of spherical and non-spherical particles in Newtonian, non-Newtonian and non-isothermal fluids is demonstrated. In addition, the applications of the fictitious domain method reported in the literature are also reviewed, and some comments on the features of the fictitious domain method and the immersed boundary method are given.  相似文献   

18.
The effects of the Prandtl number on stratified rotating turbulence have been studied in homogeneous turbulence by using direct numerical simulations and a rapid distortion theory. Fluctuations under strong stable-density stratification can be theoretically divided into the WAVE and the potential vorticity (PV) modes. In low-Prandtl-number fluids, the WAVE mode deteriorates, while the PV mode remains. Imposing rotation on a low-Prandtl-number fluid makes turbulence two-dimensional as well as geostrophic; it is found from the instantaneous turbulent structure that the vortices merge to form a few vertically-elongated vortex columns. During the period toward two-dimensionalization, the vertical vortices become asymmetric in the sense of rotation. Communicated by S. Obi PACS 47.55.Hd  相似文献   

19.
NND schemes and numerical simulation of axial symmetric free jet flows   总被引:1,自引:0,他引:1  
Through a study on one-dimensional Navier-Stokes equations, it was found that the spurious oscillations occuring near shock waves with finite difference equations are related to the dispersion term in the corresponding modified differential equations. If the sign of dispersion coefficient is properly adjusted so that the sign changes across shock waves, the undesirable oscillations can be totally suppressed. Based on this finding, the non-oscillatory, containing no free parameters and dissipative shheme (NND scheme) is developed. This scheme is one of “TVD”. The axisymmetric free jet flows are simulated numerically using this scheme. The results obtained by the present scheme are compared with the experimental picture. It is shown that the agreement is very good, and that this scheme has advantages of high resolution for capturing shocks and contact discontinuities. Project supported by National Science Foundation of China  相似文献   

20.
A two-dimensional problem with Taylor-Green initial conditions and periodic boundary conditions in a viscous compressible weakly-rarefied gas is solved within the framework of the kinetic approach. The aim of the study is to model the evolution of a given vortex system on the basis of the direct numerical solution of the Boltzmann equation. For this purpose, the discrete ordinates method is used with the collision integral calculated by the Cheremisin conservative projection method which conserves the density, momentum, and energy. The solution obtained makes it possible to trace the evolution of a vortex system given by the initial conditions and to determine the spectral properties of the flow. The flow parameter distributions are presented for successive moments of time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号