首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three-dimensional spatial direct numerical simulation is used to investigate the evolution of reactive plumes established on non-circular sources. Simulations are performed for three cases: a rectangular plume with an aspect ratio of 2:1, a square plume, and the square plume in a corner configuration. Buoyancy-induced large scale vortical structures evolve spatially in the flow field. A stronger tendency of transition to turbulence is observed for the free rectangular plume than the free square case due to the aspect ratio effect. Dynamics of the corner square plume differs significantly from the corresponding free case due to the enhanced mixing by the side-wall effects. A turbulent inertial subrange has been observed for the free rectangular and corner square plumes. Mean flow properties are also calculated. The study shows significant effects of source geometry and side-wall boundary on the flow transition and entrainment of reactive plumes. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Direct numerical simulation (DNS) of forced plumes arising frominput of both momentum and buoyancy into an ambient fluid is presented.The large vortical structures in the near field of thermal and reactiveplumes are investigated. Boundary conditions associated with the spatialDNS of open-boundary buoyant flows that are compatible with the modernnon-dissipative, high-order, finite-difference schemes have beendeveloped. The governing equations for flow and combustion at the plumecenterline are put into a special form to circumvent the singularity atthe axis associated with the cylindrical coordinates. Mixing is found tobe stronger in the planar thermal plume than in the axisymmetric case.An explanation is provided based on the vorticity budget. Axisymmetricreactive plumes with a one-step reaction governed by the Arrheniuskinetics have also been studied. The unsteady effects of chemical heatrelease and combustion-induced buoyancy on the flow structures areinvestigated. Budgets of the vorticity transport are examined to revealthe mechanisms leading to the formation and evolution of large vorticalstructures in forced plumes. It is found that volumetric expansion dueto chemical heat release tends to destroy vorticity, whilecombustion-induced buoyancy under the gravitational effect generatesvorticity. The gravitational term in the vorticity transport equation isfound to be the main mechanism for the buoyant flow instability and thedevelopment of counter-rotating vortices in reactive plumes.  相似文献   

3.
The near field dynamics of transitional buoyant reactive jets established on noncircular geometries, including a rectangular nozzle with an aspect ratio of 2:1 and a square nozzle with the same cross-sectional area, are investigated by three-dimensional spatial direct numerical simulations. Without applying external perturbations at the inflow boundary, large vortical structures develop naturally in the flow field due to buoyancy effects. Simulation results and analysis describe the details and clarify mechanisms of vortex dynamics of the noncircular buoyant reactive jets. The interaction between density gradients and gravity initiates the flow vorticity. Among the major vorticity transport terms, the gravitational term mainly promotes flow vorticity in the cross-streamwise direction. For the baroclinic torque, it can either create or destroy flow vorticity depending on the local flow structure. The vortex stretching term has different effects on the streamwise and cross-streamwise vorticity. Streamwise vorticity is mainly created by vortex stretching, while this term can either create or destroy cross-streamwise vorticity. Under the coupling effects of buoyancy and noncircular nozzle geometry, three-dimensional vortex interactions lead to the transitional behavior of the reactive jets. Simulations also show that the rectangular jet is more vortical than the square jet. The rectangular jet has a stronger tendency of transition to turbulence at the downstream due to the aspect ratio effect. Mean flow property calculations show that the rectangular buoyant reactive jet has a higher entrainment rate than its square counterpart. Received 13 December 2000 and accepted 24 July 2001  相似文献   

4.
Transitional jet diffusion flames provide the link between dynamics of laminar and turbulent flames. In this study, instabilities and their interaction with the flow structure are explored in a transitional jet diffusion flame, with focus on isolating buoyancy effects. Experiments are conducted in hydrogen flames with fuel jet Reynolds number of up to 2,200 and average jet velocity of up to 54 m/s. Since the fuel jet is laminar at the injector exit, the transition from laminar to turbulent flame occurs by the hydrodynamic instabilities in the shear layer of fuel jet. The instabilities and the flow structures are visualized and quantified by the rainbow schlieren deflectometry technique coupled with a high-speed imaging system. The schlieren images acquired at 2,000 frames per second allowed exposure time of 23 μs with spatial resolution of 0.4 mm. Results identify a hitherto unknown secondary instability in the flame surface, provide explanation for the observed intermittency in the breakpoint length, show coherent vortical structures downstream of the flame breakpoint, and illustrate gradual breakdown of coherent structures into small-scale random structures in the far field turbulent region.  相似文献   

5.
Large scale dynamic behavior of buoyant diffusion flames were studied experimentally. It was found that buoyant diffusion flames originating from circular nozzles exhibit two different modes of flame instabilities. The first mode results in a sinuous meandering of the diffusion flame, characteristic of flames originating from small diameter nozzles. This instability originates at some distance downstream of the nozzle exit in the contraction region of the buoyant flame envelope and develops into a sinuous motion of the flame. The second mode is the varicose mode which develops very close to the nozzle exit as axisymmetric perturbations of a contracting flame surface. In this mode, flame oscillations result in the formation of toroidal vortical structures that convect through the flame and cause periodic burn out at the flame top resulting in the observed flame height fluctuations. The average flame heights are found to be typically shorter for these flames. The oscillation frequencies and their scaling for the two modes are also different with the sinuous mode having higher frequencies than the varicose mode. It was also observed that the instability can switch from one mode to the other and the probability of observing the varicose mode appears to increase with increasing Richardson number. Additionally, the feasibility of altering the behavior of buoyant diffusion flames was explored through variation of the oxidizer medium density. It was found that the flame oscillations can be completely suppressed for flames burning in helium rich helium–oxygen mixtures. At lower helium concentrations, the oscillation frequency can be significantly reduced. In order to enhance the buoyancy effect, CO2–O2 mixtures were also studied. However, the density increase and its effects on flame oscillation frequency were found to be small compared to those flames burning in air. These experiments point towards the feasibility of altering buoyant flame behavior under earth gravity and studying the large scale dynamical aspects of buoyant flames without the need of variable gravity environment. Received: 2 March 1999/Accepted: 6 August 1999  相似文献   

6.
The three-dimensional interactions of a perturbed premixed flame interface with a planar incident shock wave and its reflected shock waves are numerically simulated by solving the compressible, reactive Navier–Stokes equations with the high-resolution scheme and a single-step chemical reaction. The effects of the initial incident shock wave strength (Mach number) and the initial perturbation pattern of interface on the interactions are investigated. The distinct properties of perturbation growth on the flame interface during the interactions are presented. Our results show that perturbation growth is mainly attributed to the flame stretching and propagation. The flame stretching is associated with the larger-scale vortical flow due to Richtmyer–Meshkov instability while the flame propagation is due to the chemical reaction. The mixing properties of unburned/burned gases on both sides of the flame are quantitatively analyzed by using integral and statistical diagnostics. The results show that the large-scale flow due to the vortical motion always plays a dominating role during the reactive interaction process; however, the effect of chemistry becomes more important at the later stage of the interactions, especially for higher Mach number cases. The scalar dissipation due to the molecular diffusion is always small in the present study and can be negligible.  相似文献   

7.
A spatial direct numerical simulation of an axisymmetric buoyant thermal plume is presented. The governing flow field equations at the centerline are put into a special form to circumvent the axis singularity associated with the cylindrical coordinates and the high order accuracy of the numerical scheme is preserved at the centerline. Boundary conditions associated with the spatial DNS of open-boundary buoyant flows and compatible with the modern nondissipative high-order finite difference schemes have been developed. The fluid exhibits a periodic oscillatory motion known as the puffing phenomenon, which is the formation and convection of vortex at the near field of the plume. Budgets of the vorticity transport are determined to examine the mechanisms leading to the puffing phenomenon. The analysis on vorticity transport shows that vorticity is created mainly by the gravitational term which is due to the interaction between the radial density gradients and gravity at the initial stage of the establishment of the puffing structure, while the baroclinic torque dominates the vorticity transport when the flow is established. Density stratification in the radial direction close to the plume base is found to be essential to the development of the buoyant flow instability. Simulations with different initial temperature ratios reveal that entrainment close to the plume base is enhanced at a higher temperature ratio despite the fact that the puffing structures and the plume pulsation frequency only vary very weakly with the initial temperature ratio. The predicted puffing frequencies are in agreement with the values from experimental correlations for fire and isothermal helium/air plumes. Received 12 May 1999 and accepted 9 December 1999  相似文献   

8.
A three-parameter model of turbulence applicable to free boundary layers has been developed and applied for the prediction of axisymmetric turbulent swirling flows in uniform and stagnant surroundings under the action of buoyancy forces. The turbulent momentum and heat fluxes appearing in the time-averaged equations for the mean motion have been determined from algebraic expressions, derived by neglecting the convection and diffusion terms in the differential transport equations for these quantities, which relate the turbulent fluxes to the kinetic energy of turbulence, k, the dissipation length scale of turbulence, L, and the temperature covariance, T2. Differential transport equations have been used to determine these latter quantities. The governing equations have been solved using fully implicit finite difference schemes. The turbulence model is capable of reproducing the gross features of pure jet flows, buoyant flows and swirling flows for weak and moderate swirl. The behaviour of a turbulent buoyant swirling jet has been found to depend solely on exit swirl and Froude numbers. The predicted results indicate that the incorporation of buoyancy can cause significant changes in the behaviour of a swirling jet, particularly when the buoyancy strength is high. The jet exhibits similarity behaviour in the initial region for weak swirl and weak buoyancy strengths only, and the asymptotic case of a swirling jet under the action of buoyancy forces is a pure plume in the far field. The predicted results have been found to be in satisfactory agreement with the available experimental data and in good qualitative agreement with other predicted results.  相似文献   

9.
Large-Eddy simulations (LES) of spatially evolving turbulent buoyant round jets have been carried out with two different density ratios. The numerical method used is based on a low-Mach-number version of the Navier–Stokes equations for weakly compressible flow using a second-order centre-difference scheme for spatial discretization in Cartesian coordinates and an Adams–Bashforth scheme for temporal discretization. The simulations reproduce the typical temporal and spatial development of turbulent buoyant jets. The near-field dynamic phenomenon of puffing associated with the formation of large vortex structures near the plume base with a varicose mode of instability and the far-field random motions of small-scale eddies are well captured. The pulsation frequencies of the buoyant plumes compare reasonably well with the experimental results of Cetegen (1997) under different density ratios, and the underlying mechanism of the pulsation instability is analysed by examining the vorticity transport equation where it is found that the baroclinic torque, buoyancy force and volumetric expansion are the dominant terms. The roll-up of the vortices is broken down by a secondary instability mechanism which leads to strong turbulent mixing and a subsequent jet spreading. The transition from laminar to turbulence occurs at around four diameters when random disturbances with a 5% level of forcing are imposed to a top-hat velocity profile at the inflow plane and the transition from jet-like to plume-like behaviour occurs further downstream. The energy-spectrum for the temperature fluctuations show both −5/3 and −3 power laws, characteristic of buoyancy-dominated flows. Comparisons are conducted between LES results and experimental measurements, and good agreement has been achieved for the mean and turbulence quantities. The decay of the centreline mean velocity is proportional to x −1/3 in the plume-like region consistent with the experimental observation, but is different from the x −1 law for a non-buoyant jet, where x is the streamwise location. The distributions of the mean velocity, temperature and their fluctuations in the near-field strongly depend upon the ratio of the ambient density to plume density ρa0. The increase of ρa0 under buoyancy forcing causes an increase in the self-similar turbulent intensities and turbulent fluxes and an increase in the spatial growth rate. Budgets of the mean momentum, energy, temperature variance and turbulent kinetic energy are analysed and it is found that the production of turbulence kinetic energy by buoyancy relative to the production by shear is increased with the increase of ρa0. Received 16 June 2000 and accepted 26 June 2001  相似文献   

10.
Rising buoyant plumes from a point heat source in a naturally ventilated enclosure have been investigated using large-eddy simulation (LES). The aim of the work is to assess the performance and the accuracy of LES for modelling buoyancy-driven displacement ventilation of an enclosure and to shed more light on the transitional behaviour of the plume and the coherent structures involved. The Smagorinsky sub-grid scale model is used for the unresolved small-scale turbulence. The Rayleigh number, Ra is chosen to be in the range where spatial transition from laminar to turbulent flow takes place (Ra = 1.5 × 109). The plume properties (source strength and rate of spread) as well as the ventilation properties (stratification height and temperature of stratified layer) estimated using the theory of Linden et al. are found to agree reasonably well with the LES results. The variation of the plume width with height indicates a linear variation of the entrainment coefficient rather than a constant value used by Linden et al. for a fully turbulent thermal plume. Flow visualisation revealed the nature of the large-scale coherent structures involved in the transition to turbulence in the plume. The most excited modes observed in the velocity, pressure and temperature fields spectra correspond to Strouhal number in the range 0.3 ≤ St ≤ 0.55 which is in agreement with those observed by Zhou et al. for a turbulent forced plume. Excited modes less than thisvalue (St = 0.2) were observed and may be due to low-frequency motions felt throughout the flow.  相似文献   

11.
Experiments have been performed to investigate onset and development of the buoyancy driven secondary flow in a horizontal parallel plate channel with uniform bottom heating. Flow visualization in water (Pr ≈ 7) was performed by injecting a continuous sheet of dye into the bottom boundary layer just up-stream of the heated surface, and operating conditions in the ranges 125 < Re < 1,000 and4.7 x 104 < Gr * < 8.0 x 106 were considered. Top, side, and end views revealed onset of the secondary flow as thermal plumes, which rise from the heated surface and form pairs of counter-rotating vortices. Subsequent development of the flow is characterized by a breakdown in the regular plume structure and transition to buoyancy driven turbulence. Onset of the secondary flow is advanced by increasing the heat flux and/or decreasing the flow rate, and results may be correlated in terms of a critical Grashof number and a dimensionless longitudinal distance. Liquid crystal sheets applied to the heated surface reveal significant spanwise temperature variations due to the secondary flow. The unsteadiness of the flow is discussed and comparisons are made to previous experimental and numerical work.  相似文献   

12.
The structure of an air-propane premixed flame was studied experimentally at the lean flammability limit, using Schlieren photography synchronized with OH-imaging done with the Planar Laser Induced Fluorescence (PLIF) technique. The flame was studied in a wide range of fuel equivalence ratios. Various steps in the process of the flame destabilization were investigated, including partial lift-off, stable lift-off, and final blow-out conditions. The flame structure was visualized for each stage showing the transition from a flame held at the nozzle to a flame held by the flow structures. In order to study the latter conditions in more detail the flame was acoustically excited at the preferred mode frequency generating large, stable, coherent structures in the core region. The modified flame structure was visualized to understand the interaction between the flame and vortical flow dynamics.It is shown that for the flow conditions when the flame cannot be stabilized at the nozzle, a new anchoring point is reached at the location of the initial vortex roll-up in the jet shear layer. At this point the flow reversal and transition to turbulence produce stagnation points with relatively low local velocities and velocity gradients where the flame can be stabilized. When the flame jet is being forced at the jet most unstable frequency, large coherent structures are formed and the flame is stabilized intermittently on these vortices.  相似文献   

13.
It has been well established that large‐scale structures, usually called coherent structures, exist in many transitional and turbulent flows. The topology and range of scales of those large‐scale structures vary from flow to flow such as counter‐rotating vortices in wake flows, streaks and hairpin vortices in turbulent boundary layer. There has been relatively little study of large‐scale structures in separated and reattached transitional flows. Large‐eddy simulation (LES) is employed in the current study to investigate a separated boundary layer transition under 2% free‐stream turbulence on a flat plate with a blunt leading edge. The Reynolds number based on the inlet free stream velocity and the plate thickness is 6500. A dynamic subgrid‐scale model is employed to compute the subgrid‐scale stresses more accurately in the current transitional flow case. Flow visualization has shown that the Kelvin–Helmholtz rolls, which have been so clearly visible under no free‐stream turbulence (NFST) are not as apparent in the present study. The Lambda‐shaped vortical structures which can be clearly seen in the NFST case can hardly be identified in the free‐stream turbulence (FST) case. Generally speaking, the effects of free‐stream turbulence have led to an early breakdown of the boundary layer, and hence increased the randomization in the vortical structures, degraded the spanwise coherence of those large‐scale structures. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
Instability of buoyant diffusion flames   总被引:1,自引:0,他引:1  
Buoyant jet diffusion flames are known to exhibit large scale vortical flow structures strongly interacting with flame structures. In the present work, the formation and evolution of coherent flow structures is studied in a methane/ air coflow arrangement. This is accomplished by utilizing visualization techniques (planar laser induced hydroxyl fluorescence and Mie-scattering) and Laser Doppler Velocimetry. A striking repeatability and correlation of evolving coherent structures of the air co-flow and the reaction zone is observed. In the transitional region, flow and flame structures oscillate at very pure frequencies ranging from 10–15 Hz. A local absolutely unstable velocity profile close to the burner rim seems to be responsible. Self-excited axisymmetric wavelike structures propagate up- and downstream of this location. We study the influence of the exit velocities and the type of coflowing oxidizer (air or oxygen) on the location of transition to periodic flow structures and related frequencies. Conditional averages of image and velocity data are employed to describe the evolution of coherent flow structures and their interaction with flame structures.The authors wish to thank the Deutsche Forschungsgemeinschaft for financial support under contract Kn 118/22-2.  相似文献   

15.
Most explicit algebraic stress models are formulated for turbulent shear flows without accounting for external body force effects, such as the buoyant force. These models yield fairly good predictions of the turbulence field generated by mean shear. As for thermal turbulence generated by the buoyant force, the models fail to give satisfactory results. The reason is that the models do not explicitly account for buoyancy effects, which interact with the mean shear to enhance or suppress turbulent mixing. Since applicable, coupled differential equations have been developed describing these thermal turbulent fields, it is possible to develop corresponding explicit algebraic stress models using tensor representation theory. While the procedure to be followed has been employed previously, unique challenges arise in extending the procedure for developing the algebraic representations to turbulent buoyant flows. In this paper the development of an explicit algebraic stress model (EASM) is confined to the homogeneous buoyant shear flow case to illustrate the methodology needed to develop the proper polynomial representations. The derivation is based on the implicit formulation of the Reynolds stress anisotropy at buoyant equilibrium. A five-term representation is found to be necessary to account properly for the effect of the thermal field. Thus derived, external buoyancy effects are represented in the scalar coefficients of the basis tensors, and structural buoyancy effects are accounted for in additional terms in the stress anisotropy tensor. These terms will not vanish even in the absence of mean shear. The performance of the new EASM, together with a two-equation (2-Eq) model, the non-buoyant EASM of Gatski and Speziale (1993) and a full second-order model, is assessed against direct numerical simulations of homogeneous, buoyant shear flows at two different Richardson numbers representing weak and strong buoyancy effects. The calculations show that this five-term representation yields better results than the 2-Eq model and the EASM of Gatski and Speziale where buoyancy effects are not explicitly accounted for. Received 5 March 2001 and accepted 15 January 2002  相似文献   

16.
Phase-resolved measurements of the velocity field in acoustically forced, flickering laminar co-flowing methane/air diffusion flames were made. Identical flames have been studied extensively in the past in order to characterize the effects of the vortical structures responsible for the flicker on the flame structure, but the initial velocity perturbation and the velocity fields have not been reported previously. Phase-locked measurements of the instantaneous two-dimensional velocity field at ten phases within a full excitation cycle were made using particle image velocimetry. The velocity measurements were complemented by phase-resolved shadowgraphs recorded in the vicinity of the flame base. Measurements are reported for the two forcing conditions that have most often been studied for this burner. When integrated with the results of previous studies, these measurements provide a clearer picture of the interactions between the buoyancy-induced vortical structures and the flame sheets, as well as providing the initial conditions required for realistic modeling of these flames.  相似文献   

17.
The evolution of a wall-attached plume in a confined box is studied here with the aid of three dimensional direct numerical simulations (DNS). The plume originates from a local line heat source of length, L, placed at the bottom left corner of the box. The Reynolds number of the wall plume, based on box height and buoyant velocity scale, is ReH=14530 and boxes of two different aspect ratios (ratio of box width to height) for a particular value of L are simulated. We observe that the plume develops along the vertical sidewall while remaining attached to it before spreading across the top wall to form a buoyant fluid layer and eventually moving downwards and filling the whole box. The original filling box model of Baines and Turner (1969) is modified to incorporate the wall shear stress, and the results from the DNS are compared against the new model. In modelling plumes, we find that the entrainment coefficient (α) for wall-attached plumes is reduced to approximately half of that in the free plume, and the main reason is a diminished contribution of turbulence production to α resulting from a restricted ability of the large-scale eddies to transport momentum. Also, unlike the free plume where away from the source inertial forces balances buoyancy forces, here in our simulations of wall-attached plumes this balance is marginally off, likely due to wall friction. A reasonable agreement is observed between our model and DNS data for the volume and momentum fluxes in the quiescent uniform environment and also for the time-dependent buoyancy profile calculated far away from the plume.  相似文献   

18.
《Fluid Dynamics Research》2004,35(4):287-298
Experimental studies of the effect of constant magnetic field on the process of mean velocity profile stabilization in a wake behind a bluff body are described. To interpret the obtained results, a theoretical model is proposed explaining the scheme of wave-mean flow interaction. We assume that the stabilization process is based on the injection of energy of respective turbulent modes into vortical structures through non-attenuating inertial waves generated in these vortical structures. We also take into account helical character of turbulence in the conditions under study, with weak energy dissipation and its accumulation in large scales.  相似文献   

19.
Wakes behind heated cylinders, circular, and square have been experimentally investigated at low-Reynolds numbers. The electrically heated cylinder is mounted in a vertical airflow facility such that buoyancy aids the inertia of main flow. The operating parameters, i.e., Reynolds number and Richardson number are varied to examine flow behavior over a range of experimental conditions from forced to mixed convection regime. Laser schlieren-interferometry has been used for visualization and analysis of flow structures. Complete vortex shedding sequence has been recorded using a high-speed camera. The results on detailed dynamical characteristics of vortical structures, i.e., their size, shape and phase, Strouhal number, power spectra, convection velocity, phase shift, vortex inception length, and fluctuations are reported. On heating, alteration of organized (coherent) structures with respect to shape, size and their movement is readily perceived from instantaneous Schlieren images before they reduce to a steady plume. For both cylinders, Strouhal number shows a slow increase with an increase in Richardson number. At a critical value, there is complete disappearance of vortex shedding and a drop in Strouhal number to zero. The corresponding spectra evolve from being highly peaked at the vortex shedding frequency to a broadband appearance when vortex shedding is suppressed. The geometry of vortex structures transforms to a slender shape before shedding is suppressed. At this heating level, absence of multiple peaks in power spectra at cylinder centerline indicates absence of interaction between opposite shear layers. The convection velocity of vortices increases in stream wise direction to an asymptotic value and its variation is a function of Richardson number. The convection speed abruptly falls to zero at critical Richardson number. The phase difference of shed vortices between upstream and downstream location increases with an increase in Richardson number. Velocity profiles show an increase in fluid speed and beyond the critical point, buoyancy forces add enough momentum to cancel momentum deficit due to the cylinder. Overall, the combined effect of temperature gradient on the separating shear layer velocity profile in near field and vortical structures interaction in far field influences wake instability of a heated cylinder. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
Slope is among the most influencing factor affecting the spread of wildfires. A contribution to the understanding of the fluid dynamics of a fire spreading in these terrain conditions is provided in the present paper. Coupled optical diagnostics are used to study the slope effects on the flow induced by a fire at laboratory scale. Optical diagnostics consist of particle image velocimetry, for investigating the 2D (vertical) velocity field of the reacting flow and chemiluminescence imaging, for visualizing the region of spontaneous emission of OH radical occurring during gaseous combustion processes. The coupling of these two techniques allows locating accurately the contour of the reaction zone within the computed velocity field. The series of experiments are performed across a bed of vegetative fuel, under both no-slope and 30° upslope conditions. The increase in the rate of fire spread with increasing slope is attributed to a significant change in fluid dynamics surrounding the flame. For horizontal fire spread, flame fronts exhibit quasi-vertical plume resulting in the buoyancy forces generated by the fire. These buoyancy effects induce an influx of ambient fresh air which is entrained laterally into the fire, equitably from both sides. For upward flame spread, the induced flow is strongly influenced by air entrainment on the burnt side of the fire and fire plume is tilted toward unburned vegetation. A particular attention is paid to the induced air flow ahead of the spreading flame. With increasing the slope angle beyond a threshold, highly dangerous conditions arise because this configuration induces wind blows away from the fire rather than toward it, suggesting the presence of convective heat transfers ahead of the fire front.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号