首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Oxidised, multi-walled, carbon nanotubes can be grafted with polystyrene molecules using an situ radical polymerisation reaction, thereby dramatically modifying their solubility and their suitability for nanocomposite applications.  相似文献   

2.
Novel films consisting of multi-walled carbon nanotubes (MWCNTs) were fabricated by means of the chemical vapor deposition technique with decomposition of either acetonitrile (ACN) or benzene (BZ) in the presence of ferrocene (FeCp2) which served as catalyst. The electrochemical response of the two different kinds of MWCNT-based films, further referred to as MWCNT-ACN and MWCNT-BZ, towards the oxidation of dopamine (DA) to dopamine-o-quinone (DAQ) was tested by means of cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy. Both MWCNT-based films exhibit quasi-reversible response towards DA/DAQ with some slight kinetic differences; specifically, the charge-transfer process was found to be faster on MWCNT-ACN (k s?=?35.3?×?10?3 cm s?1) compared to MWCNT-BZ (k s?=?6.55?×?10?3 cm s?1). The detection limit of MWCNT-BZ for DA (0.30 μM) appears to be poorer compared to that of MWCNT-ACN (0.03 μM), but nevertheless, both MWCNT-based films exhibit greater detection ability compared to other electrodes reported in the literature. The sensitivities of MWCNT-ACN and MWCNT-BZ towards DA/DAQ were determined as 0.65 and 0.22?A M?1 cm?2, respectively. The findings suggest that the fabricated MWCNT-based electrodes can be successfully applied for the detection of molecules with biological interest.  相似文献   

3.
Synthesis of highly nitrogen-doped multi-walled carbon nanotubes   总被引:1,自引:0,他引:1  
We present a new synthesis route for nitrogen doped carbon nanotubes (CNx) based on the aerosol method. Tubes with a record high concentration of nitrogen (approximately 20 atom%) have been synthesized, confirmed by electron energy loss spectroscopy (EELS). A strong correlation between the N/C ratio and morphology of the tubes is observed and discussed.  相似文献   

4.
Multi-walled carbon nanotubes (MWCNT) are shown to be efficient transducers of the ionic-to-electronic current. This enables the development of a new solid-contact pH-selective electrode that is based on the deposition of a 35-μm thick layer of MWCNT between the acrylic ion-selective membrane and the glassy carbon rod used as the electrical conductor. The ion-selective membrane was prepared by incorporating tridodecylamine as the ionophore, potassium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate as the lipophilic additive in a polymerized methylmethacrylate and an n-butyl acrylate matrix. The potentiometric response shows Nernstian behaviour and a linear dynamic range between 2.89 and 9.90 pH values. The response time for this electrode was less than 10 s throughout the whole working range. The electrode shows a high selectivity towards interfering ions. Electrochemical impedance spectroscopy and chronopotentiometry techniques were used to characterise the electrochemical behaviour and the stability of the carbon-nanotube-based ion-selective electrodes.  相似文献   

5.
The potential energies of interaction between carbon nanotubes and internal fullerenes of spherical and ellipsoidal shape, as well as between nanotubes in multi-walled nanotubes were calculated using the Lennard–Jones (LJ) potential for carbon–carbon interactions. The optimum and maximum size of internal fullerenes and multi-walled nanotubes are determined as a function of the external nanotube radius. It was found that at the potential energy minimum, the van der Waals distance is close to that in graphite for all studied cases. The calculated results agree with available experimental observations and could be used as a guide for future experiments.  相似文献   

6.
Polyaniline (PANI) nanotubes were prepared by the oxidation of aniline in solutions of acetic or succinic acid, and subsequently carbonized in a nitrogen atmosphere during thermogravimetric analysis running up to 830 °C. The nanotubular morphology of PANI was preserved after carbonization. The molecular structure of the original PANI and of the carbonized products has been analyzed by FTIR and Raman spectroscopies. Carbonized PANI nanotubes contained about 8 wt.% of nitrogen. The molecular structure, thermal stability, and morphology of carbonized PANI nanotubes were compared with the properties of commercial multi-walled carbon nanotubes.  相似文献   

7.
Carbon nanotubes (CNTs) possess some highly desirable sorbent characteristics, which make them attractive for a variety of applications including micro-scale preconcentration. The main advantage of CNTs is that they are non-porous, thus eliminating the mass transfer resistance related to diffusion into pore structures. Their high aspects ratio leads to large specific capacity, consequently they have the potential to be the next generation high performance sorbent. In this paper we present the microtrapping. The objective of this paper was to study the sorption of select organic compounds on single and multi-walled nanotubes either packed or self-assembled onto a micro-sorbent trap. The data show that the CNTs show highly favorable adsorption as well as desorption. The former is characterized by relatively large breakthrough volumes and isosteric heats of adsorption (DeltaH(s), close to 64 kJ/mol). Similarly, rapid desorption from CNTs was demonstrated by narrow desorption bandwidth. The elimination of non-tubular carbons (NTC) from the CNT surface is important, as they reduce the performance of these sorbents.  相似文献   

8.
Conventional liquid phase oxidation of multiwall carbon nanotubes (MWCNTs) using concentrated acids generates contaminating debris that should be removed using aqueous base before further reaction.  相似文献   

9.
Lithium insertion (deinsertion) into (from) chemically etched multi-walled carbon nanotubes (c-MWNTs) has been investigated using various electrochemical techniques such as chronopotentiometry, chronoamperometry, and electrochemical impedance spectroscopy. The results indicate that not only the reversible capacity but also the rate capability was improved by a chemical etching (shortening) of the nanotubes. The observed enhancement in capability at high-rate lithium insertion/deinsertion is attributed to the increased electrochemically active area and reduced lithium diffusion length along the nanotubes, resulting from the structural defects and open ends of the c-MWNTs.  相似文献   

10.
We describe a novel tunable approach for the synthesis of carbon nanotube-silica nanobead composites. The control of nanotube morphology and bead size coupled with the versatility of silica chemistry makes these structures an excellent platform for the development of biosensors, or for optical, magnetic and catalytic applications.  相似文献   

11.
Multi-walled carbon nanotubes/polypropylene composites were compounded using a twin-screw extruder. Here, nanotubes with different lengths, i.e. 1-2 μm and 5-15 μm, respectively, were applied at a constant volume content of 1%. Notched Charpy impact tests showed that toughening effects of nanotubes depended highly on testing temperatures. The impact resistance was notably enhanced at a temperature above the glass transition temperature of matrix. Longer nanotubes performed more effective in toughening compared to the shorter ones. The increment of impact resistance of nanotube-filled polypropylene was considered due to enhanced load-carrying capability and much-increased deformation of matrix. SEM fractography further revealed the toughening mechanisms in a micro-scale. The impact energy was improved via nanotube breakage and pullout, which likely led to a series of energy consuming actions. In addition, the smaller spherulite size induced by nanotubes would be favourable to the impact resistance partially.  相似文献   

12.
Carbon nanotubes (CNTs) have been developed for medical and biotechnological applications in the past decades. Their widespread applications make it important to understand their potential hazards to human and the environment. In this study, the possible toxicological effects of the oxidized multi-walled carbon nanotubes (O-MWCNTs) were assessed on RAW 264.7 macrophages in vitro. Several toxicological endpoints, such as cell viability, the release of LDH and IL-8, GSH/GSSG ratio, intracellular calcium concentration and ultrastructural changes in cell morphology, were carried out. The results showed that O-MWCNTs had very limited effects on oxidative stress, cellular toxicity and apoptosis. Transmission electron microscope clearly demonstrates RAW 264.7 macrophages engulfed plenty of O-MWCNTs, and some of them resided in the cytoplasm, while the morphology was not altered by O-MWCNTs. As the control, the pristine MWCNTs (p-MWCNTs) show higher cytotoxicity than O-MWCNTs, damaging cell viability and inducing cell apoptosis. All these toxicological data are of benefit to more wide applications of O-MWCNTs in the future.  相似文献   

13.
Yang C  Chai Y  Yuan R  Guo J  Jia F 《Analytical sciences》2012,28(3):275-282
Three novel hybrid materials have been synthesized by ligands: N-(2-vinylsulfanyl-ethylidene)-benzene-1,2-dimine (SBD), N-pyridin-2-ylmethylene-benzene-1,2-dimine (NBD) and N-furan-2-ylmethylene-benzene-1,2-dimine (OBD), covalently linking to multi-walled carbon nanotubes (MWCNTs). These MWCNT hybrid materials were used both as ionophores and as ion-to-electron transducers to construct Ag(+) carbon paste electrodes. The resulting electrodes show higher selectivity to Ag(+) than other cations tested. Among the three electrodes, the electrode based on SBD-g-MWCNTs with optimum composition shows the best performance to Ag(+). It exhibits an excellent Nernstian response to Ag(+) in the concentration range from 8.8 × 10(-8) to 1.0 × 10(-1) M with a detection limit of 6.3 × 10(-8) M, and it can also be used over a wide pH range of 3.0-8.0 with a quick response time of 5 s. The response mechanism of the proposed electrode was also investigated by using AC impedance and UV-vis spectroscopy techniques.  相似文献   

14.
In this study, covalent functionalization of carbon nanotubes (CNTs) was accomplished by surface-initiated epoxide ring-opening polymerization. FT-IR spectra showed that polyether and epoxide group covalently attached to the sidewalls of CNTs. TGA results indicated that the polyether was successfully grown from the CNT surface, with the final products having a polymer weight percentage of ca. 14-74 wt%. The O/C ratio of CNTs increased significantly from 5.1% to 29.8% after surface functionalization of CNTs. SEM and TEM images of functionalized CNTs exhibited that the tubes were enwrapped by polymer chains with thickness of several nanometers, forming core-shell structures with CNTs at the center.  相似文献   

15.
A series of new functionalised carbonaceous materials were prepared by means of oxidation and ammoxidation of commercially available multi-walled carbon nanotubes. The effect of oxygen and nitrogen doping on the textural, surface as well as thermal properties of the prepared adsorbents was tested. The materials were characterized by elemental analysis, low-temperature nitrogen sorption, determination of the surface oxygen groups content as well as by coupled thermogravimetric and spectroscopic methods (TG/DSC/MS). Depending of the variant of raw nanotubes modification, the final products were oxygen- and nitrogen-doped materials of medium-developed surface area and mesoporous structure, showing highly diverse acidic-basic character of the surface, from the weakly acidic to slightly alkaline.  相似文献   

16.
Dispersions of multi-walled carbon nanotubes (MWNTs) assisted by surfactant adsorption were prepared for a number of ionic and non-ionic surfactants including sodium 4-dodecylbenzenesulfonate (NaDDBS), hexadecyl(trimethyl)azanium bromide (CTAB), sodium dodecane-1-sulfonate (SDS), Pluronic? F68, Pluronic? F127, and Triton? X-100 to examine the effects of nanotube diameter, surfactant concentration, and pH on nanotube dispersability. Nanotube diameter was found to be an important role in surfactant adsorption rendering single-walled carbon nanotube studies as unreliable in predicting MWNT dispersive behavior. Similar to other reports, increasing surfactant concentrations resulted in a solubility plateau. Quantification of nanotube solubility at these plateaus demonstrated that CTAB is the best surfactant for MWNTs at neutral pH conditions. Deviations from neutral pH demonstrated negligible influence on non-ionic surfactant adsorption. In contrast, both cationic and anionic surfactants were found to be poor dispersing aids for highly acidic solutions while, CTAB remained a good surfactant under strongly basic conditions. These pH dependent results were explained in the context of nanotube surface ionization and Debye length variation.  相似文献   

17.
L-酪氨酸功能化多壁碳纳米管的制备及表征   总被引:1,自引:0,他引:1  
采用L-酪氨酸作为修饰剂,制备了一种新型功能化的多壁碳纳米管,并对其进行了表征。红外光谱和电化学实验均证实碳纳米管和酪氨酸是通过酰胺键共价键合的。其中,循环伏安实验中0.22V处羧基峰的消失与红外光谱中1717cm^-1处N-酰化氨基酸的-C=O峰相对应,2931和2860cm^-1处的-CH2-的伸缩振动峰的出现证明了产物的形成。  相似文献   

18.
In this study, the potential sorption capacity of multi-walled carbon nanotubes (MWCNTs) was investigated as a means of removing fluoride from the drinking water of a number of regions in Iran and from experimental solutions. The test was conducted in both batch and continuous operation modes. Batch mode experiments were used to study the effect of parameters such as pH, contact time, ionic strength, adsorbent dose, adsorbent capacity, and the presence of foreign anions on the efficiency of fluoride removal. The results showed that the highest level of sorption occurs at pH 5 (about 94% at 18 min). The ionic strength of the solutions and the presence of co-anions such as chloride, nitrate, sulfate, hydrogen carbonate, perchlorate had a negligible effect on the sorption of F onto MWCNTs. Sorption capacity measurements revealed that MWCNTs have a saturation capacity of 3.5 mg of F per gram. Sorption data were best fitted with the Fruendlich sorption isotherm equation, which indicates that F tends to be adsorbed on MWCNTs in a multilayered manner. Experiments using Kohbanan city drinking water, which contains the highest level of F among the drinking water samples studied, showed that MWCNTs can remove over 85% of fluoride content.  相似文献   

19.
In the present work, the decorated purified raw multi-walled carbon nanotubes (R-MWCNTs) were obtained by chemical modification (CM) by treatment with concentrated sulfuric acid and concentrated nitric acid mixture with a certain volume ratio of 1: 3. The R-MWCNTs and CM-MWCNTs samples were investigated by X-ray Diffraction (XRD) analysis and Fourier transform infrared spectroscopy (FT-IR). The prepared MWCNTs were homogeneously dispersed in water using a commercial surfactant (Polyvinyl pyrrolidone, (PVP)) and ultra-sonication. The dispersion of MWCNTs was obtained by UV-Vis analysis. The results show that chemical modification purified MWCNTs and more effective functional groups were attached on the surface of MWCNTs. Meanwhile, R-MWCNTs and CM-MWCNTs were uniformly distributed in aqueous PVP solution and the dispersion of CM-MWCNTs in water was better.  相似文献   

20.
A range of substituted ferrocenes were used as catalysts for the synthesis of multi-walled carbon nanotubes (MWCNTs) and carbon fibers (CFs). These products were obtained in the temperature range 800-1000 °C, in a reducing atmosphere of 5% H2 by pyrolysis of (CpR)(CpR′)Fe (R and R′ = H, Me, Et and COMe) in toluene solution. The effect of pyrolysis temperature (800-1000 °C), catalyst concentration (5 and 10 wt.% in toluene) and solution injection rate (0.2 and 0.8 ml/min) on the type and yield of carbonaceous product synthesized was investigated. Carbonaceous products formed include graphite film (mostly at high temperature; 900-1000 °C), carbon nanotubes and carbon fibers. The carbonaceous materials were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. The ferrocene ring substituents influenced both the CNT diameter and the carbon product formed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号