首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The current equilibrium is investigated, where the generation of the Hall electric field on the magnetic Debye radius r B = B 0/(4πen e) is considered by the drifting of the relativistic electrons crosswise to the strong magnetic field. In this case, the electron propagation is possible at the distance d that is essentially larger than the electron radius of the backward reflection in the magnetic field r 0 ? m e v z c/(eB 0). The instability of the joint drift motion of ions and electrons is investigated for the frequency oscillation w much higher than the ion cyclotron frequency w Bi and by 4π n i m i c 2 ? B 0 2 and (k · B 0) = 0. It is shown that the resonance effects by the ion beam’s plasma frequency w ? kv 0 = w pi leads to the generation of the nonpotential perturbations with the characteristic increment Imw ~ 10?1 ÷ 10? 2 w pi. Estimates show that the instability, associated with the propagation of the high-energy ion beam through the strong magnetic field, can essentially be like the edge-localized mode in tokamaks.  相似文献   

2.
3.
Photoionization of the Xe atom and Xe@C60 molecule have been studied usingthe random phase approximation with exchange (RPAE) method. The Xe atom was described byrelaxed orbitals including overlap integrals. The C60 fullerene has beenrepresented by an attractive short range spherical well with potentialV(r), given byV(r) =  ?V 0 forr i  < r < r o ,otherwise V(r) = 0 wherer i andr o are respectively, the inner and outerradii of the spherical shell. The time independent Schrödinger equation was solved usingboth regular and irregular solutions and the continuous boundary conditions atr i andr o . The results demonstrate improvementto previous calculations for both the Xe atom and Xe@C60 molecule and comparevery well with the recent experimental data.  相似文献   

4.
The relation between the broken rotational symmetry of a system and the topology of its Fermi surface is studied for the two-dimensional system with the quasiparticle interaction f(p, p') having a sharp peak at |p ? p'| = q0. It is shown that, in the case of attraction and q0 = 2pF the first instability manifesting itself with the growth of the interaction strength is the Pomeranchuk instability. This instability appearing in the L = 2 channel gives rise to a second order phase transition to a nematic phase. The Monte Carlo calculations demonstrate that this transition is followed by a sequence of the first and second order phase transitions corresponding to the changes in the symmetry and topology of the Fermi surface. In the case of repulsion and small values of q0, the first transition is a topological transition to a state with the spontaneously broken rotational symmetry, namely, corresponding to the nucleation of L ? π(pF/q0 ? 1) small hole pockets at the distance pF ? q0 from the center and the deformation of the outer Fermi surface with the characteristic multipole number equal to L. At q0 → 0, when the model under study transforms to the two-dimensional Nozières model, the multipole number characterizing the spontaneous deformation is L → ∞, whereas the infinitely folded Fermi curve acquires the Hausdorff dimension D = 2 which corresponds to the state with the fermion condensate.  相似文献   

5.
Phase transitions (PTs) and frustrations in two-dimensional structures described by a three-vertex antiferromagnetic Potts model on a triangular lattice are investigated by the Monte Carlo method with regard to nearest and next-nearest neighbors with interaction constants J1 and J2, respectively. PTs in these models are analyzed for the ratio r = J2/J1 of next-nearest to nearest exchange interaction constants in the interval |r| = 0–1.0. On the basis of the analysis of the low-temperature entropy, the density of states function of the system, and the fourth-order Binder cumulants, it is shown that a Potts model with interaction constants J1 < 0 and J2 < 0 exhibits a first-order PT in the range of 0 ? r < 0.2, whereas, in the interval 0.2 ? r ? 1.0, frustrations arise in the system. At the same time, for J1 > 0 and J2 < 0, frustrations arise in the range 0.5 < |r| < 1.0, while, in the interval 0 ? |r| ? 1/3, the model exhibits a second-order PT.  相似文献   

6.
We consider a discrete scalar, quantum field theory based on a cubic 4-dimensional lattice. We mainly investigate a discrete scattering operator S(x 0,r) where x 0 and r are positive integers representing time and maximal total energy, respectively. The operator S(x 0,r) is used to define transition amplitudes which are then employed to compute transition probabilities. These probabilities are conditioned on the time-energy (x 0,r). In order to maintain total unit probability, the transition probabilities need to be reconditioned at each (x 0,r). This is roughly analogous to renormalization in standard quantum field theory, except no infinities or singularities are involved. We illustrate this theory with a simple scattering experiment involving a common interaction Hamiltonian. We briefly mention how discreteness of spacetime might be tested astronomically. Moreover, these tests may explain the existence of dark energy and dark matter.  相似文献   

7.
A theoretical study of the orientation of product rotational angular momenta for two chemical reaction channels: F + HD(ν r = 0, j r = 0) → HF(ν, j) + D and F + HD(ν r = 0, j r = 0) → DF(ν, j) + H at a E coll = 78.54 meV collision energy was performed. Angular momentum orientation was described on the basis of irreducible tensor operators (state multipoles) expressed through anisotropy transfer coefficients, which contained quantum-mechanical scattering T matrices determined on the basis of exact solutions to quantum scattering equations obtained using the hyperquantization algorithm. The possibility of the existence of substantial orientation of the angular momentum of reaction products j in the direction perpendicular to the scattering plane was demonstrated. The dependences of differential reaction cross sections and state multi-poles on the ν and j quantum numbers were calculated and analyzed. A experimental scheme based on the multiphoton ionization method was suggested. The scheme can be used to detect predicted reaction product angular momentum orientation.  相似文献   

8.
The velocityv of the propagation of discharge along the anode of a self-quenchingG—M-counter is a function of total pressureP, pressure of the quenching gasP D, radius of the cathoder a and of the anoder i andV ü the difference between working- and starting-potential. For the mixtures argon-methylal, argon-alcohol and helium-alcohol isv=v 0·exp[k·(V ü/V e)1/2] withv 0 the velocity at the starting potentialV e v 0=(a+b·P D/PV n 1/2 ·exp [(c?d·PD/P·V n ?1/2 ] andV n=V e·(lnr a/r i)?1.k, a, b, c andd are characteristical constants of the filling gas.  相似文献   

9.
The nonlinear magnetotransport of a two-dimensional (2D) electron gas in one-dimensional lateral superlattices based on a selectively doped GaAs/AlAs heterostructure is studied. The one-dimensional potential modulation of the 2D electron gas is performed by means of a series of metallic strips formed on the surface of a heterostructure with the use of electron beam lithography and a lift-off process. The dependence of the differential resistance rxx on the magnetic field B < 1.5T in superlattices with the period a = 400 nm at a temperature of T = 4.2 K is investigated. It is found that electronic states with rxx ≈ 0 appear in one-dimensional lateral superlattices in crossed electric and magnetic fields. It is shown that states with rxx ≈ 0 in 2D electronic systems with one-dimensional periodic modulation arise at the minima of commensurability oscillations of the magnetoresistance.  相似文献   

10.
The dynamics of a quantum vortex toric knot TP,Q and other analogous knots in an atomic Bose condensate at zero temperature in the Thomas–Fermi regime is considered in the hydrodynamic approximation. The condensate has a spatially inhomogeneous equilibrium density profile ρ(z, r) due to the action of an external axisymmetric potential. It is assumed that z*= 0, r*= 1 is the point of maximum of function rρ(z, r), so that δ(rρ) ≈ –(α–)z2/2–(α + )(δr)2/2 for small z and δr. The geometrical configuration of a knot in the cylindrical coordinates is determined by a complex 2πP-periodic function A(?, t) = Z(?, t) + i[R(?, t))–1]. When |A| ? 1, the system can be described by relatively simple approximate equations for P rescaled functions \({W_n}(\varphi ) \propto A(2\pi n + \varphi ):i{W_{n,t}} = - ({W_{n,\varphi \varphi }} + \alpha {W_n} - \in W_n^*)/2 - \sum\nolimits_{j \ne n} {1/(W_n^* - W_j^*)} \). For = 0, examples of stable solutions of type W n = θ n (?–γt)exp(–iωt) with a nontrivial topology are found numerically for P = 3. In addition, the dynamics of various unsteady knots with P = 3 is modeled, and the tendency to the formation of a singularity over a finite time interval is observed in some cases. For P = 2 and small ≠ 0, configurations of type W0W1B0exp(iζ) + C(B0, α)exp(–iζ) + D(B0, α)exp(3iζ), where B0 > 0 is an arbitrary constant, ζ = k0?–Ω0t + ζ0, k0 = Q/2, and Ω0 = (–α)/2–2/B02, which rotate about the z axis, are investigated. Wide stability regions for such solutions are detected in the space of parameters (α, B0). In unstable zones, a vortex knot may return to a weakly excited state.  相似文献   

11.
We consider the spin-1/2 model on the honeycomb lattice [A. Kitaev, Ann. Phys. 321, 2 (2006)] in the presence of a weak magnetic field h α ? J. Such a perturbation treated in the lowest nonvanishing order over h α leads [K.S. Tikhonov, M.V. Feigel’man, and A.Yu. Kitaev, Phys. Rev. Lett. 106, 067203 (2011)] to a powerlaw decay of irreducible spin correlations 《s z (t, r)s z (0, 0)》 ∝ h z 2 f(t, r), where f(t, r) ∝ [max(t, Jr)]–4. We have studied the effects of the next order of perturbation in h z and found an additional term of the order h z 4 in the correlation function 《s z (t, r)s z (0, 0)》 which scales as h z 4 cosγ/r 3 at Jt? r, where γ is the polar angle in the 2D plane. We demonstrate that such a contribution can be understood as a result of a perturbation of the effective Majorana Hamiltonian by the weak imaginary vector potential A x i h z 2 .  相似文献   

12.
In this work, we consider two different techniques based on reservoir engineering process and quantum Zeno control method to analyze the decoherence control mechanism of a charged magneto-oscillator in contact with different type of environment. Our analysis reveals that both the control mechanisms are very much sensitive on the details of different environmental spectrum (J?(ω)), and also on different system and reservoir parameters, e.g., external magnetic field (r c ), confinement length (r 0), temperature (T), cut-off frequency of reservoir spectrum (ω cut ), and measurement interval (τ). We also demonstrate the manipulation scheme of the continuous passage from decay suppression to decay acceleration by tuning the above mentioned system or reservoir parameters, e.g., r c , r 0, T and τ.  相似文献   

13.
The yields of near-zero-energy e0 electrons from sources of different thickness in the 64Cu decay have been measured. At small thicknesses of the 64Cu source, the e0-electron yield Y e sharply increases and is qualitatively described by the dependence Y er ?2, where r is the distance from the point of charge formation to the source surface.  相似文献   

14.
We derive the free energy functional of a bilayer lipid membrane from the first principles of elasticity theory. The model explicitly includes position-dependent mutual slide of monolayers and bending deformation. Our free energy functional of a liquid-crystal membrane allows for incompressibility of the membrane and vanishing of the in-plane shear modulus and obeys reflectional and rotational symmetries of the flat bilayer. Interlayer slide at the midplane of the membrane results in local difference of surface densities of the monolayers. The slide amplitude directly enters the free energy via the strain tensor. For small bending deformations, the ratio between the bending modulus and the area compression coefficient, K b /K A , is proportional to the square of monolayer thickness h. Using the functional, we perform self-consistent calculation of the entropic potential acting on a bilayer between parallel confining walls separated by distance 2d. We find that at the minimum of the confining potential, the temperature-dependent curvature α ∝ T 2 /K b d4 is enhanced four times for a bilayer with slide as compared with a unit bilayer. We also calculate viscous modes of a bilayer membrane between confining walls. Pure bending of the membrane is investigated, which is decoupled from area dilation at small amplitudes. Three sources of viscous dissipation are considered: water and membrane viscosities and interlayer drag. The dispersion relation gives two branches ω1, 2 (q).  相似文献   

15.
We focus on the behaviours of small field of an arctangent potential form, in Randall–Sundrum II braneworld. Within this framework, there is only one brane with positive tension while the second membrane is sent to infinity, and the configuration the model allows to localize the gravity on the curvature of the bulk. In that context, we found that inflationary observables (n s, r, and dn s/dlnk) depend only on the e-folding number N. From the power perturbation value P R (k) given by the latest observational measurements, we evaluate the values of brane tension λ and the energy scale V 0, and we have shown that the various inflationary perturbation parameters are widely consistent with the recent Planck data for a suitable choice of value of the number N. Concerning the reheating phase, we found a large value of the temperature T re ~ 5 × 1014 GeV.  相似文献   

16.
The microstructural peculiarities of Nb powder and Nb + Al powder mixtures after mechanical activation in a high-energy planetary ball mill were investigated by transmission electron microscopy. The materials revealed two-level structural states: nanograins of size from 50 to 100 nm that contain subgrains of size ~20 nm and less with low-angle misorientation boundaries, elastic lattice curvature gC ij ≈100°…200°μm?1, curl or curvature gradient ij /? r > 100 μm?2 and high (up to 10E μm?1) local stress gradients (couples). An important factor in the formation of the above states is the capability of nano-objects to reach high elastic lattice curvature, high gradients of this curvature, and high local internal stress gradients at rather low absolute values of the internal stress.  相似文献   

17.
18.
Results of direct numerical simulations on Rayleigh-Bénard convection in low-Prandtl-number convection with stress-free horizontal boundaries are presented. Simulations are done in a three dimensional rectangular simulation box of dimensions L x × L y × 1. Instabilities and the corresponding fluid patterns near onset of convection are investigated by varying the horizontal aspect ratio η = L y /L x in a range 1 ≤ η ≤ 4. Fluid patterns are complex and unsteady at the instability onset for η ≥ 2. They consist of wavy rolls, rhombic patterns and oblique wavy rolls. The patterns near onset are time periodic for η < 2. We observe periodic wavy rolls for η = 4 / 3. Homoclinic bifurcations are observed for η = 1 for 0 ≤ Pr ≤ 0.03. We observe spontaneous breaking of a single limit cycle in two and again spontaneous merging of two limit cycles into one in a simulation box with η = 1, as the reduced Rayleigh number r = Ra/R a c is raised at a fixed value of Pr. The effect of Prandtl number on the homoclinic bifurcations is also investigated. We also present a low-dimensional model, which captures the instability sequence quite accurately for η = 1.  相似文献   

19.
Deviations from Archimedes’ principle for spherical molecular hydrogen particles with the radius R0 at the surface of 4He liquid helium have been investigated. The classical Archimedes’ principle holds if R0 is larger than the helium capillary length Lcap ? 500 μm. In this case, the elevation of a particle above the liquid is h+ ~ R0. At 30 μm < R0 < 500 μm, the buoyancy is suppressed by the surface tension and h+ ~ R30/L2cap. At R0 < 30 μm, the particle is situated beneath the surface of the liquid. In this case, the buoyancy competes with the Casimir force, which repels the particle from the surface deep into the liquid. The distance of the particle to the surface is h- ~ R5/3c/R2/30 if R0 > Rc. Here, \({R_c} \cong {\left( {\frac{{\hbar c}}{{\rho g}}} \right)^{1/5}} \approx 1\), where ? is Planck’s constant, c is the speed of light, g is the acceleration due to gravity, and ρ is the mass density of helium. For very small particles (R0 < Rc), the distance h_ to the surface of the liquid is independent of their size, h_ = Rc.  相似文献   

20.
The theory of the interaction of electrons with a high-frequency electric field in one-dimensional two-barrier nanostructures with symmetric barriers of finite height and widths was developed. An exact solution to the Schrödinger equation was found for electrons in this nanostructure in the absence of high-frequency electric field. An analytical expression for the direct current I 0 induced in this structure by an incident electron flux with energy ε differing slightly from the resonant level energy ε r (|ε ? ε r | << ε r ) was derived. In the small-signal approximation, the active (field-phased) component I c of the alternating electric current was calculated. At ε > ε r , the current I c is negative in the entire frequency range, which suggests the possibility of ac electric field amplification and generation in the two-barrier resonant-tunneling structure with the barriers of finite height and width. Within the applicability of the theory (?ω << ε r ), the frequency at which amplification and generation of the ac electric field are possible reaches ω ? 1013 s ?1; the power transferred by electrons to the field is ~1 W/cm2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号