首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has recently been proposed that fluctuating "pulled" fronts propagating into an unstable state should not be in the standard Kardar-Parisi-Zhang (KPZ) universality class for rough interface growth. We introduce an effective field equation for this class of problems, and show on the basis of it that noisy pulled fronts in d+1 bulk dimensions should be in the universality class of the ((d+1)+1)D KPZ equation rather than of the (d+1)D KPZ equation. Our scenario ties together a number of heretofore unexplained observations in the literature, and is supported by previous numerical results.  相似文献   

2.
We study the field theories for pinned elastic systems at equilibrium and at depinning. Their beta functions differ to two loops by novel "anomalous" terms. At equilibrium we find a roughness zeta = 0.208 298 04 epsilon + 0.006 858 epsilon(2) (random bond), zeta = epsilon/3 (random field). At depinning we prove two-loop renormalizability and that random field attracts shorter range disorder. We find zeta = epsilon/3(1 + 0.143 31 epsilon), epsilon = 4 - d, in violation of the conjecture zeta = epsilon/3, solving the discrepancy with simulations. For long range elasticity zeta = epsilon/3(1 + 0.397 35 epsilon), epsilon = 2 - d, much closer to the experimental value (approximately 0.5 both for liquid helium contact line depinning and slow crack fronts) than the standard prediction 1/3.  相似文献   

3.
The scaling exponents alpha, beta, and 1/z in thin films of the organic molecule diindenoperylene deposited on SiO2 under UHV conditions are determined. Atomic-force microscopy, x-ray reflectivity, and diffuse x-ray scattering were employed. The surface width displays power law scaling over more than 2 orders of magnitude in film thickness. We obtained alpha = 0.684+/-0.06, beta = 0.748+/-0.05, and 1/zeta = 0.92+/-0.20. The derived exponents point to an unusually rapid growth of vertical roughness and lateral correlations. We suggest that they could be related to lateral inhomogeneities arising from the formation of grain boundaries between tilt domains in the early stages of growth.  相似文献   

4.
The scaling properties of three-dimensional magnetohydrodynamic turbulence with finite magnetic helicity are obtained from direct numerical simulations using 512(3) modes. The results indicate that the turbulence does not follow the Iroshnikov-Kraichnan phenomenology. The scaling exponents of the structure functions can be described by a modified She-Leveque model zeta(p) = p/9+1-(1/3)(p/3), corresponding to basic Kolmogorov scaling and sheetlike dissipative structures. In particular, we find zeta(2) approximately 0.7, consistent with the energy spectrum E(k) approximately k(-5/3) as observed in the solar wind, and zeta(3) approximately 1, confirming a recent analytical result.  相似文献   

5.
Intergranular and transgranular fracture surfaces obtained in a face centered cubic alloy are studied using 3D maps reconstructed by scanning electron microscopy stereo imaging. The roughness exponents measured in the intergranular and transgranular surfaces, respectively, zeta = 0.83 +/- 0.05 and zeta = 0.75 +/- 0.05, are in agreement with the universal roughness value of 3D fractures. However, the slightly smaller value related to the transgranular surface could be a consequence of crystallographic transgranular zones disseminated on the surface whose roughness exponent zeta = 0.65 +/- 0.07 is close to the one usually measured on 2D fractures.  相似文献   

6.
The statistical objects characterizing turbulence in real turbulent flows differ from those of the ideal homogeneous isotropic model. They contain contributions from various two- and three-dimensional aspects, and from the superposition of inhomogeneous and anisotropic contributions. We employ the recently introduced decomposition of statistical tensor objects into irreducible representations of the SO(3) symmetry group (characterized by j and m indices, where j=0ellipsisinfinity,-j相似文献   

7.
We report experiments on spontaneous imbibition of a viscous fluid by a model porous medium in the absence of gravity. The average position of the interface satisfies Washburn's law. Scaling of the interface fluctuations suggests a dynamic exponent z approximately 3, indicative of global dynamics driven by capillary forces. The complete set of exponents clearly shows that interfaces are not self-affine, exhibiting distinct local and global scaling, both for time (beta = 0.64 +/- 0.02, beta(*) = 0.33 +/- 0.03) and space (alpha = 1.94 +/- 0.20, alpha(loc) = 0.94 +/- 0.10). These values are compatible with an intrinsic anomalous scaling scenario.  相似文献   

8.
We suggest that the observed large-scale universal roughness of brittle fracture surfaces is due to the fracture propagation being a damage coalescence process described by a stress-weighted percolation phenomenon in a self-generated quadratic damage gradient. We use the quasistatic 2D fuse model as a paradigm of a mode I fracture model. We measure for this model, which exhibits a correlated percolation process, the correlation length exponent nu approximately 1.35 and conjecture it to be equal to that of classical percolation, 4/3. We then show that the roughness exponent in the 2D fuse model is zeta=2nu/(1+2nu)=8/11. This is in accordance with the numerical value zeta=0.75. Using the value for 3D percolation, nu=0.88, we predict the roughness exponent in the 3D fuse model to be zeta=0.64, in close agreement with the previously published value of 0.62+/-0.05. We furthermore predict zeta=4/5 for 3D brittle fractures, based on a recent calculation giving nu=2. This is in full accordance with the value zeta=0.80 found experimentally.  相似文献   

9.
The KPZ formula [V.G. Knizhnik, A.M. Polyakov, and A.B. Zamolodchikov, Mod. Phys. Lett. A 3 (1988) 819] shows that coupling central charge c≤1 spin models to 2D quantum gravity dresses the conformal weights to get new critical exponents, where the relation between the original and dressed weights depends only on c. At the discrete level the coupling to 2D gravity is effected by putting the spin models on annealed ensembles of Φ3 planar random graphs or their dual triangulations, where the connectivity fluctuates on the same time-scale as the spins.Since the sole determining factor in the dressing is the central charge, one could contemplate putting a spin model on a quenched ensemble of 2D gravity graphs with the “wrong” c value. We might then expect to see the critical exponents appropriate to the c value used in generating the graphs. In such cases the KPZ formula could be interpreted as giving a continuous line of critical exponents which depend on this central charge. We note that rational exponents other than the KPZ values can be generated using this procedure for the Ising, tricritical Ising and 3-state Potts models.  相似文献   

10.
The long-wavelength properties of the (d + 1)-dimensional Kuramoto-Sivashinsky (KS) equation with both conservative and nonconservative noises are investigated by use of the dynamic renormalization-group (DRG) theory. The dynamic exponent z and roughness exponent α are calculated for substrate dimensions d = 1 and d = 2, respectively. In the case of d = 1, we arrive at the critical exponents z = 1.5 and α = 0.5 , which are consistent with the results obtained by Ueno et al. in the discussion of the same noisy KS equation in 1+1 dimensions [Phys. Rev. E 71, 046138 (2005)] and are believed to be identical with the dynamic scaling of the Kardar-Parisi-Zhang (KPZ) in 1+1 dimensions. In the case of d = 2, we find a fixed point with the dynamic exponents z = 2.866 and α = -0.866 , which show that, as in the 1 + 1 dimensions situation, the existence of the conservative noise in 2 + 1 or higher dimensional KS equation can also lead to new fixed points with different dynamic scaling exponents. In addition, since a higher order approximation is adopted, our calculations in this paper have improved the results obtained previously by Cuerno and Lauritsen [Phys. Rev. E 52, 4853 (1995)] in the DRG analysis of the noisy KS equation, where the conservative noise is not taken into account.  相似文献   

11.
We report on the doping dependence of the order of the ferromagnetic metal to paramagnetic insulator phase transition in La1-xCaxMnO3. At x=0.33, magnetization and specific heat data show a first order transition, with an entropy change (2.3 J/mol K) accounted for by both volume expansion and the discontinuity of M approximately 1.7mu(B) via the Clausius-Clapeyron equation. At x=0.4, the data show a continuous transition with tricritical point exponents alpha=0.48+/-0.06, beta=0.25+/-0.03, gamma=1.03+/-0.05, and delta=5.0+/-0.8. This tricritical point separates first- (x<0.4) from second-order (x>0.4) transitions.  相似文献   

12.
We explore the tricritical points and the critical lines of both Blume-Emery-Griffiths and Ising model within long-range interactions in the microcanonical ensemble. For K=KMTP, the tricritical exponents take the values β=1/4, 1=γ-≠γ+=1/2 and 0=α-≠α+=-1/2, which disagree with classical (mean field) values. When K>KMTP, the phase transition becomes second order and the critical exponents have classical values except close to the canonical tricritical parameters (KCTP), where the values of the critical expoents become β=1/2, 1=γ-≠γ+=2 and 0=α+≠α+=1.  相似文献   

13.
Based on the well-known mapping between the Burgers equation with noise and the Kardar–Parisi–Zhang (KPZ) equation for fluctuating interfaces, we develop a fluctuating lattice Boltzmann (LB) scheme for growth phenomena, as described by the KPZ formalism. A very simple LB-KPZ scheme is demonstrated in 1+1 spacetime dimensions, and is shown to reproduce the scaling exponents characterizing the growth of one-dimensional fluctuating interfaces.  相似文献   

14.
唐刚  郝大鹏  夏辉  韩奎  寻之朋 《中国物理 B》2010,19(10):100508-100508
In order to describe the time delay in the surface roughing process the Kardar-Parisis-Zhang (KPZ) equation with memory effects is constructed and analysed using the dynamic renormalization group and the power counting mode coupling approach by Chattopadhyay [2009 Phys. Rev. E 80 011144]. In this paper, the scaling analysis and the classical self-consistent mode-coupling approximation are utilized to investigate the dynamic scaling behaviour of the KPZ equation with memory effects. The values of the scaling exponents depending on the memory parameter are calculated for the substrate dimensions being 1 and 2, respectively. The more detailed relationship between the scaling exponent and memory parameter reveals the significant influence of memory effects on the scaling properties of the KPZ equation.  相似文献   

15.
Using 226 x 10(6) gamma(4S) --> BB events collected with the BABAR detector at the PEP-II e+e- storage ring at the Stanford Linear Accelerator Center, we measure the branching fraction for B0 --> D0K+pi-, excluding B0 --> D*-K+, to be beta(B0 --> D0K+pi-) = (88 +/- 15 +/- 9) x 10(-6). We observe B0 --> D0K*(892)0 and B0 --> D2*(2460)-K+ contributions. The ratio of branching fractions beta(B0 --> D*-K+)/beta(B0 --> D*-pi+) = (7.76 +/- 0.34+/-0.29)% is measured separately. The branching fraction for the suppressed mode B0 --> D0K+pi- is beta(B0 --> D0K+pi-) < 19 x 10(-6) at the 90% confidence level.  相似文献   

16.
Our velocity measurements on quasi-two-dimensional turbulent flow in a rapidly rotating annulus yield self-similar (scale-independent) probability distribution functions for longitudinal velocity differences, deltav(l) = v(x+l)-v(x). These distribution functions are strongly non-Gaussian, suggesting that the coherent vortices play a significant role. The structure functions <[deltav(l)](p)> approximately l(zeta)p exhibit anomalous scaling: zeta(p) = p / 2 rather than the expected zeta(p) = p / 3. Correspondingly, the energy spectrum is described by E(k) approximately k(-2) rather than the expected E(k) approximately k(-5/3).  相似文献   

17.
Phase transitions from an active into an absorbing, inactive state are generically described by the critical exponents of directed percolation (DP), with upper critical dimension d(c)=4. In the framework of single-species reaction-diffusion systems, this universality class is realized by the combined processes A-->A+A, A+A-->A, and A-->0. We study a hierarchy of such DP processes for particle species A,B,..., unidirectionally coupled via the reactions A-->B, ...(with rates mu(AB),...). When the DP critical points at all levels coincide, multicritical behavior emerges, with density exponents beta(i) which are markedly reduced at each hierarchy level i> or =2. This scenario can be understood on the basis of the mean-field rate equations, which yield beta(i)=1/2(i-1) at the multicritical point. Using field-theoretic renormalization-group techniques in d=4-epsilon dimensions, we identify a new crossover exponent phi, and compute phi=1+O(epsilon(2)) in the multicritical regime (for small mu(AB)) of the second hierarchy level. In the active phase, we calculate the fluctuation correction to the density exponent on the second hierarchy level, beta(2)=1/2-epsilon/8+O(epsilon(2)). Outside the multicritical region, we discuss the crossover to ordinary DP behavior, with the density exponent beta(1)=1-epsilon/6+O(epsilon(2)). Monte Carlo simulations are then employed to confirm the crossover scenario, and to determine the values for the new scaling exponents in dimensions d< or =3, including the critical initial slip exponent. Our theory is connected to specific classes of growth processes and to certain cellular automata, and the above ideas are also applied to unidirectionally coupled pair annihilation processes. We also discuss some technical as well as conceptual problems of the loop expansion, and suggest some possible interpretations of these difficulties.  相似文献   

18.
We study the structural properties of self-attracting walks in d dimensions using scaling arguments and Monte Carlo simulations. We find evidence of a transition analogous to the Theta transition of polymers. Above a critical attractive interaction u(c), the walk collapses and the exponents nu and k, characterizing the scaling with time t of the mean square end-to-end distance approximately t(2nu) and the average number of visited sites approximately t(k), are universal and given by nu=1/(d+1) and k=d/(d+1). Below u(c), the walk swells and the exponents are as with no interaction, i.e., nu=1/2 for all d, k=1/2 for d=1 and k=1 for d>/=2. At u(c), the exponents are found to be in a different universality class.  相似文献   

19.
The scaling properties of the maximal height of a growing self-affine surface with a lateral extent L are considered. In the late-time regime its value measured relative to the evolving average height scales like the roughness: h*(L) approximately L alpha. For large values its distribution obeys logP(h*(L)) approximately (-)A(h*(L)/L(alpha))(a). In the early-time regime where the roughness grows as t(beta), we find h*(L) approximately t(beta)[lnL-(beta/alpha)lnt+C](1/b), where either b = a or b is the corresponding exponent of the velocity distribution. These properties are derived from scaling and extreme-value arguments. They are corroborated by numerical simulations and supported by exact results for surfaces in 1D with the asymptotic behavior of a Brownian path.  相似文献   

20.
Transverse momentum spectra of pi+/-, p, and p up to 12 GeV/c at midrapidity in centrality selected Au + Au collisions at square root sNN=200 GeV are presented. In central Au + Au collisions, both pi +/- and p(p) show significant suppression with respect to binary scaling at pT approximately >4 GeV/c. Protons and antiprotons are less suppressed than pi+/-, in the range 1.5 approximately < pT approximately < 6 GeV/c. The pi-/pi+ and p/p ratios show at most a weak pT dependence and no significant centrality dependence. The p/pi ratios in central Au + Au collisions approach the values in p + p and d + Au collisions at pT approximately >5 GeV/c. The results at high pT indicate that the partonic sources of pi+/-, p, and p have similar energy loss when traversing the nuclear medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号