首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
四— (对—磺酸基 )苯基卟啉 ( TSPP4-)作为超灵敏显色剂和电极修饰材料在光谱分析和电化学分析中有重要应用。它在酸性条件下以质子化二酸 H2 4TSPP4-的形式存在。七十年代 ,Paster-nack等人曾发现 H2 4TSPP4-的电子吸收谱随溶液 p H的改变产生复杂的变化 ,并推测与H2 4TSPP4-的分子缔合有关 [1] 。近年来 ,H2 4TSPP4-的分子缔合及其光谱性质重新引起人们的兴趣。基于光谱实验结果 [2 -6] ,一些作者认为 TSPP在强酸性条件下形成准一维的有序结构 ,类似于菁染料的 J-聚集体 ( Jelley- Scheibe聚集体 ) [3— 5 ] 。目前对 …  相似文献   

2.
Changes in the electronic structure of olivine Li(1-x)CoPO(4), 4.8 V positive electrode material for lithium ion batteries, were investigated using the X-ray absorption spectroscopy (XAS) technique. The threshold energy in the Co K-edge increased with electrochemical Li removal, indicating the oxidation of cobalt ions due to charge compensation. Moreover, P and O K-edge XAS showed a slight shift in threshold energy with Li removal. Although it is generally believed that the electrons of PO(4) polyanion do not contribute to the oxidation process, present experimental results indicate changes in the electronic structure around PO(4) units. Such results would be interpreted by the idea of the hybridization effect between the Co 3d and O 2p orbitals and of the polarization effect introduced by Li ions.  相似文献   

3.
Quenching mechanisms of the Li3p and Li4p states in collision with the nitrogen molecule are studied by laser-induced fluorescence spectroscopy and by a quantum chemical calculation. The Li3p state is observed to be efficiently quenched to the Li3s state detected as intense 3s-->2p emission. The Li4p state is efficiently quenched to the Li4s and Li3d states detected as 4s-2p and 3d-2p emissions, respectively. The potential-energy surfaces for the Li(2s-4p)N2 states show a large number of conical intersections and avoided crossings resulting from the couplings between the ionic [Li+(N2)-] and covalent configurations. There are a large number of stable excited states, and we give here the spectroscopic constants for the lowest two stable isomers correlating to Li2p+N2.  相似文献   

4.
The electronic structure of the phospho-olivine Li(x)FePO4 was studied using soft-x-ray-absorption (XAS) and emission spectroscopies. Characteristic changes in the valence and conduction bands are observed upon delithation of LiFePO4 into FePO4. In LiFePO4, the Fe-3d states are localized with little overlap with the O-2p states. Delithiation of LiFePO4 gives stronger hybridization between Fe-3d states and O-2p states leading to delocalization of the O-2p states. The Fe L-edge absorption spectra yield "fingerprints" of the different valence states of Fe in LiFePO4 and FePO4. Resonant soft-x-ray-emission spectroscopy at the Fe L edge shows strong contributions from resonant inelastic soft x-ray scattering (RIXS), which is described using an ionic picture of the Fe-3d states. Together the Fe L-edge XAS and RIXS study reveals a bonding character of the Fe 3d-O2p orbitals in FePO4 in contrast to a nonbonding character in LiFePO4.  相似文献   

5.
Changes in electronic structure upon electrochemical lithium insertion into two iron compounds, namely, rhombohedral Fe2(SO4)3 with a NASICON-type structure and monoclinic Fe2(MoO4)3, were investigated using X-ray absorption spectroscopy (XAS). Fe K-edge and L(III)- and L(II)-edge XAS revealed that the rearrangement of Fe d electrons or rehybridization of Fe d-O p bonding took place accompanied by the reduction of Fe ions upon Li insertion for both samples and that a larger change in spectra was observed in Fe2(SO4)3. In addition, the changes in the electronic structure of the polyanion units XO4(2-) (X = S or Mo) after Li insertion were also investigated by O K-edge and S K-edge or Mo L(III)-edge XAS. The results indicated that the electronic structure around oxygen markedly changed in Fe2(MoO4)3, while no significant change was observed in Fe2(SO4)3.  相似文献   

6.
We propose for the first time a few examples of stable transition metal complexes of an all-metal antiaromatic molecule Al4Li4. We demonstrate that these all-metal species can be stabilized by complexation with 3d transition metals very similar to their organic counterpart, C4H4. Complexation to transition metal ions reduces the frontier orbital energies and introduces aromatic charactersitics. We consider a series of such complexes: [eta4-(Al4Li4)-Fe(CO)3, eta2,sigma2-(Al4Li4)-Ni, and (Al4Li4)2Ni] and compare and contrast their energetics with their organometallic counterparts. Fragmentation energy, orbital correlation energy analysis, and the nucleus-independent chemical shift (NICS) values support the complexation-induced stabilities in these systems.  相似文献   

7.
Tetrahedral FeCl[N(SiMe(3))(2)](2)(THF) (2), prepared from FeCl(3) and 2 equiv of Na[N(SiMe(3))(2)] in THF, is a useful ferric starting material for the synthesis of weak-field iron-imide (Fe-NR) clusters. Protonolysis of 2 with aniline yields azobenzene and [Fe(2)(mu-Cl)(3)(THF)(6)](2)[Fe(3)(mu-NPh)(4)Cl(4)] (3), a salt composed of two diferrous monocations and a trinuclear dianion with a formal 2 Fe(III)/1 Fe(IV) oxidation state. Treatment of 2 with LiCl, which gives the adduct [FeCl(2)(N(SiMe(3))(2))(2)](-) (isolated as the [Li(TMEDA)(2)](+) salt), suppresses arylamine oxidation/iron reduction chemistry during protonolysis. Thus, under appropriate conditions, the reaction of 1:1 2/LiCl with arylamine provides a practical route to the following Fe-NR clusters: [Li(2)(THF)(7)][Fe(3)(mu-NPh)(4)Cl(4)] (5a), which contains the same Fe-NR cluster found in 3; [Li(THF)(4)](2)[Fe(3)(mu-N-p-Tol)(4)Cl(4)] (5b); [Li(DME)(3)](2)[Fe(2)(mu-NPh)(2)Cl(4)] (6a); [Li(2)(THF)(7)][Fe(2)(mu-NMes)(2)Cl(4)] (6c). [Li(DME)(3)](2)[Fe(4)(mu(3)-NPh)(4)Cl(4)] (7), a trace product in the synthesis of 5a and 6a, forms readily as the sole Fe-NR complex upon reduction of these lower nuclearity clusters. Products were characterized by X-ray crystallographic analysis, by electronic absorption, (1)H NMR, and M?ssbauer spectroscopies, and by cyclic voltammetry. The structures of the Fe-NR complexes derive from tetrahedral iron centers, edge-fused by imide bridges into linear arrays (5a,b; 6a,c) or the condensed heterocubane geometry (7), and are homologous to fundamental iron-sulfur (Fe-S) cluster motifs. The analogy to Fe-S chemistry also encompasses parallels between Fe-mediated redox transformations of nitrogen and sulfur ligands and reductive core conversions of linear dinuclear and trinuclear clusters to heterocubane species and is reinforced by other recent examples of iron- and cobalt-imide cluster chemistry. The correspondence of nitrogen and sulfur chemistry at iron is intriguing in the context of speculative Fe-mediated mechanisms for biological nitrogen fixation.  相似文献   

8.
以FePO4·xH2O、V2O5、NH4H2PO4和Li2CO3为原料, 以乙二酸为还原剂, 通过湿化学还原-低温热处理方法制备出锂离子复合正极材料xLiFePO4·yLi3V2(PO4)3. X射线衍射(XRD)结果表明, 合成的材料中橄榄石结构的LiFePO4和单斜晶系的Li3V2(PO4)3两相共存; 从复合材料中LiFePO4、Li3V2(PO4)3相对于相同条件下制备的纯相LiFePO4和Li3V2(PO4)3的晶格常数变化以及结合高分辨透射电子显微镜(HRTEM)、能量散射X射线(EDAX)的结果可以看出, 在复合材料xLiFePO4·yLi3V2(PO4)3中存在部分V和Fe, 分别掺杂在LiFePO4和Li3V2(PO4)3中, 并形成固溶体; X射线光电子能谱(XPS)结果表明, Fe/V在复合材料中的价态与各自在LiFePO4和Li3V2(PO4)3中的价态保持一致, 分别为+2 和+3价. 充放电测试表明, 制备出的复合正极材料电化学性能明显优于单一的LiFePO4和Li3V2(PO4)3; 循环伏安测试表明, 复合正极材料具有优良的脱/嵌锂性能.  相似文献   

9.
Inspired by the pioneering experimental characterisation of the all-metal aromatic unit Al(4)2- in the bimetallic molecules MAl4- (M=Li, Na, Cu) and by the very recent theoretical design of sandwich-type transition-metal complexes [Al4MAl4]q- (q=0-2; M=Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W), we used density functional theory (DFT) calculations (B3LYP/6-311+G(d) to design a series of novel non-transition-metal sandwich complexes based on the all-metal aromatic unit Al4(2-) and the main-group metals M (M=Li, Na, K, Be, Mg, Ca). The traditional homo-decked sandwich compounds [Al4MAl4]q- (without counterions) and (nM)q+[Al4MAl4]q- (with counterions M) (q=2-3, M=Li, Na, K, Be, Mg, Ca), although some of them are truly energy minima, have a much higher energy than many fused isomers. We thus concluded that it seems unlikely for Al4(2-) to sandwich the main-group metal atoms in the homo-decked sandwich form. Alternatively, we proposed a new type of sandwich complex, namely hetero-decked sandwich compounds [CpMAl4]q-, that are the ground-state structures for each M both with and without counterions. It was shown that with the rigid Cp- partner, the all-metal aromatic unit Al(4)2- might indeed act as a "superatom". These new types of all-metal aromatic unit-based sandwich complexes await future experimental verification.  相似文献   

10.
Lam WH  Cheng EC  Yam VW 《Inorganic chemistry》2006,45(23):9434-9441
Density functional theory (DFT) calculations at the hybrid Perdew, Burke, and Ernzerhof functional level were performed to study the electronic structures of the ground and excited states of the luminescent tetranuclear copper(I) complexes [Cu4(mu-dppm)4(mu4-E)]2+ [E = PPh (1) and S (2)] by using model complexes [Cu4(mu-H2PCH2PH2)4(mu4-E)]2+ [E = PPh (1a) and S (2a)]. The time-dependent DFT method at the same level associated with the conductor-like polarizable continuum model was used to study the nature of the low-energy transitions in their electronic absorption spectra. The results indicate that the lowest energy absorptions of both 1 and 2 are attributed to ligand-to-metal charge-transfer (LMCT) (E --> Cu4) with mixing of metal-cluster-centered (MCC) (3d --> 4s/3d --> 4p) singlet-singlet transitions. The geometry optimizations on the lowest energy triplet state reveal that the emissive states of both complexes involve a considerable structural distortion in which they are derived predominantly from an admixture of 3LMCT (E --> Cu4) and 3MCC (3d --> 4p) origin. In addition to the photophysical properties, the fluxional behavior of 2 observed from the NMR studies but not that of 1 was investigated. It is found that the fluxionality in 2 involves the shuttling of the sulfido ligand through the rectangular Cu4 core.  相似文献   

11.
Temperature-pressure phase diagrams are generated through the study of hydrogen adsorption on the (N(4)C(3)H)(6)Li(6) cluster at the B3LYP/6-31+G(d) level of theory. The possibility of hydrogen storage in an associated 3D functional material is also explored. Electronic structure calculations are performed to generate temperature-pressure phase diagrams so that the temperature-pressure zones are identified where the Gibbs free energy change associated with the hydrogen adsorption process on (N(4)C(3)H)(6)Li(6) cluster becomes negative and hence thermodynamically favorable. Both adsorption and desorption processes are likely to be kinetically feasible as well.  相似文献   

12.
The uranyl tetrachloride dianion (UO(2)Cl(4) (2-)) is observed in the gas phase using electrospray ionization and investigated by photoelectron spectroscopy and relativistic quantum chemical calculations. Photoelectron spectra of UO(2)Cl(4) (2-) are obtained at various photon energies and congested spectral features are observed. The free UO(2)Cl(4) (2-) dianion is found to be highly stable with an adiabatic electron binding energy of 2.40 eV. Ab initio calculations are carried out and used to interpret the photoelectron spectra and elucidate the electronic structure of UO(2)Cl(4) (2-). The calculations show that the frontier molecular orbitals in UO(2)Cl(4) (2-) are dominated by the ligand Cl 3p orbitals, while the U-O bonding orbitals are much more stable. The electronic structure of UO(2)Cl(4) (2-) is compared with that of the recently reported UO(2)F(4) (2-) [P. D. Dau, J. Su, H. T. Liu, J. B. Liu, D. L. Huang, J. Li, and L. S. Wang, Chem. Sci. 3 1137 (2012)]. The electron binding energy of UO(2)Cl(4) (2-) is found to be 1.3 eV greater than that of UO(2)F(4) (2-). The differences in the electronic stability and electronic structure between UO(2)Cl(4) (2-) and UO(2)F(4) (2-) are discussed.  相似文献   

13.
通过乌尔曼偶联反应合成了一种新颖的萘胺-咔唑分子,4-咔唑基-N-(3,′4′-二甲苯基)-1,8-萘二甲酰亚胺(CNP).运用量子化学中的密度泛函理论(TD-DFT),在B3LYP/6-31(d)水平上对化合物在阴离子、阳离子、中性状态下进行了结构全优化,得到了化合物的总能量、HOMO能级、LUMO能级、电离能和电子亲合势.理论计算了化合物的紫外吸收光谱和红外光谱.紫外吸收光谱、红外光谱、HOMO能级和LUMO能级数值与实验值高度一致.在理论上分析了化合物作为电致发光材料的可能性,化合物CNP是一种很好的电子传输材料.  相似文献   

14.
Ab initio calculations reveal that all-metal antiaromatic molecules like Al4M4 (M = Li, Na and K) can be stabilized in half sandwich (Al4M4)Fe(CO)3 and full sandwich (Al4M4)2Ni complexes. The formation of the full sandwich complex [(Al4M4)2Ni] from its organometallic precursor depends on the stability of the organic-inorganic hybrid (C4H4)Ni(Al4Li4).  相似文献   

15.
Large coupled cluster computations utilizing the Dunning weighted correlation-consistent polarized core-valence (cc-pwCVXZ) hierarchy of basis sets have been conducted, resulting in a panoply of internally consistent geometries and atomization energies for small Li(n) and Li(n)H (n=1-4) clusters. In contrast to previous ab initio results, we predict a monotonic increase in atomization energies per atom with increasing cluster size for lithium clusters, in accordance with the historical Knudsen-effusion measurements of Wu. For hydrogenated lithium clusters, our results support previous theoretical work concerning the relatively low atomization energy per atom for Li(2)H compared to LiH and Li(3)H. The CCSD(T)/cc-pwCVQZ atomization energies for LiH, Li(2)H, Li(3)H, and the most stable isomer of Li(4)H, including zero-point energy corrections, are 55.7, 79.6, 113.0, and 130.6 kcal/mol, respectively. The latter results are not consistent with the most recent experiments of Wu.  相似文献   

16.
The structures of lithium iron dimolybdate, LiFe(MoO4)2, and lithium gallium dimolybdate, LiGa(MoO4)2, are shown to be isomorphous with each other. Their structures consist of segregated layers of LiO6 bicapped trigonal bipyramids and Fe(Ga)O6 octahedra separated and linked by layers of isolated MoO4 tetrahedra. The redetermined structure of trilithium gallium trimolybdate, Li3Ga(MoO4)3, shows substitional disorder on the Li/Ga site and consists of perpendicular chains of LiO6 trigonal prisms and two types of differently linked Li/GaO6 octahedra.  相似文献   

17.
Optimized structures, with all real frequencies, of superalkali superhalides (Li(3))(+)(SH)(-) (SH=LiF(2), BeF(3), and BF(4)), are obtained, for the first time, at the B3LYP/aug-cc-pVDZ and MP2/aug-cc-pVDZ computational levels. These superalkali superhalides possess three characteristics that are significantly different from normal alkali halides. 1) They have a variety of structures, which come from five bonding mode types: edge-face, edge-edge, face-face, face-edge, and staggered face-edge. We find that the bonding mode type closely correlates with the Li(3)-SH bond energy. 2) The valence electrons on the Li(3) ring are pushed out by the (SH)(-) anion, and become excess electrons, conferring alkalide or electride characteristics on these Li(3)-SH species, depending on the bonding mode type. 3) The highest occupied molecular orbital of each Li(3)-SH species is a doubly occupied delocalized sigma bonding orbital on the Li(3) ring, which indicates its aromaticity. It is noticeable that the maximum negative nucleus-independent chemical shift value (about -10 ppm) moves out from the center of the Li(3) ring, owing to repulsion by the SH(-) anion. We find that these superalkali superhalides are not only complicated "supermolecules", but are also a new type of alkalide or electride, with aromaticity.  相似文献   

18.
Infrared spectra of Li(NH3)(n) clusters as a function of size are reported for the first time. Spectra have been recorded in the N-H stretching region for n=4-->7 using a mass-selective photodissociation technique. For the n=4 cluster, three distinct IR absorption bands are seen over a relatively narrow region, whereas the larger clusters yield additional features at higher frequencies. Ab initio calculations have been carried out in support of these experiments for the specific cases of n=4 and 5 for various isomers of these clusters. The bands observed in the spectrum for Li(NH3)(4) can all be attributed to N-H stretching vibrations from solvent molecules in the first solvation shell. The appearance of higher frequency N-H stretching bands for n > or =5 is assigned to the presence of ammonia molecules located in a second solvent shell. These data provide strong support for previous suggestions, based on gas phase photoionization measurements, that the first solvation shell for Li(NH3)(n) is complete at n=4. They are also consistent with neutron diffraction studies of concentrated lithium/liquid ammonia solutions, where Li(NH3)(4) is found to be the basic structural motif.  相似文献   

19.
Ab initio computed interaction forces are employed to describe the microsolvation of the A+2(2Sigma) (A=Li, Na, K) molecular ion in 4He clusters of small variable size. The minimum energy structures are obtained by performing energy minimization based on a genetic algorithm approach. The symmetry features of the collocation of solvent adatoms around the dimeric cation are analyzed in detail, showing that the selective growth of small clusters around the two sides of the ion during the solvation process is a feature common to all three dopants.  相似文献   

20.
In this paper, we present a calculation for the bound states of A(1) symmetry on the spin-aligned Li(3)(1 (4)A(')) potential energy surface. We apply a mixture of discrete variable representation and distributed approximating functional methods to discretize the Hamiltonian. We also introduce a new method that significantly reduces the computational effort needed to determine the lowest eigenvalues and eigenvectors (bound state energies and wave functions of the full Hamiltonian). In our study, we have found the lowest 150 energy bound states converged to less than 0.005% error, and most of the excited energy bound states converged to less than 2.0% error. Furthermore, we have estimated the total number of the A(1) bound states of Li(3) on the spin-aligned Li(3)(1 (4)A(')) potential surface to be 601.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号