首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heterogeneity in laser-induced particle structures was investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) of individual particles micro-machined using focused ion beam (FIB). The primary particle size distribution spanned over three orders of magnitude, i.e., in the range 10 nm–10 m with few larger secondary objects. The particulate larger than 0.5 m often resulted from particle–particle aggregation, mostly upon a spherical core, seldom in chain-like structures. The core of these fractal aggregates was found to be polycrystalline. The heterogeneity of the particles with respect to structure and chemistry is surely of importance for elemental analysis using laser ablation as sample introduction technique. PACS 39.30.+w; 61.46.+w; 81.20.Rg  相似文献   

2.
The deposition of tin-clad nano-size copper particles was carried out by means of ink-jet printing. Curing the particles on Polyimide (PI) turned them into soldered structures using an Nd-YAG laser. Area coverage of 55% was achieved for a single-layer print. Subsequent laser sintering increased this value to 95%. A Butanol-based copper ink and an aqueous tin (Sn)-clad Copper (Cu) ink were produced and were ink-jetted in this work. These nano-metallic inks showed excellent suspension stability with particle weight concentrations as high as 5%. The ink components were examined by measuring the particle size distribution in a dispersed condition, and the melting temperature. A piezo ink-jet print head was used to deposit the inks onto a moveable substrate. The thermal effect of the laser irradiation allowed approaching and connecting adjacent particles by melting the particle’s tin coating. The results were examined with regard to structure and soldering properties using EDX, SEM and optical microscopy.  相似文献   

3.
We have investigated the effect of inter-particle repulsion and particle–substrate interaction on the microstructure of silica particle monolayer films fabricated by an evaporation-induced self-assembly method as a function of surface coverage. Suspensions of mono-dispersed colloidal silica particles (106 nm diameter) without binders cast on PET substrates by bar coating were evaporated under a fixed condition to give two-dimensional particle films. The inter-particle repulsion was controlled by zeta potential of the particle suspensions. The particle–substrate interaction was varied by the surface treatment of the substrates by argon radio frequency plasma. The self-assembled microstructure was observed by atomic force microscopy (AFM) and quantitatively evaluated by Voronoi analysis in terms of particle order and domain quality. In all the conditions attempted, the microstructure improved with the increase of surface coverage (C). However, little difference in the correlation between C and the microstructure due to the experimental conditions was observed until C reached about 0.6, where both particle order and domain quality of more inter-particle repulsion (higher absolute value of zeta potential) began to exceed those of less inter-particle repulsion only when the substrates with less particle–substrate attraction (substrates with no surface treatment) were used. These results were consistent with the AFM observation. By considering a feasible model for the process, it could be inferred that the microstructure dependence on the inter-particle repulsion originated from a leap in the frequency of inter-particle collision at a critical value of C (=49/750.65 in the model). We found that stronger inter-particle repulsion and weaker particle–substrate attraction were preferable for the better microstructure above the critical C of about 0.6.  相似文献   

4.
The surface area of nanosized agglomerates is of great importance as the reactivity and health effects of such particles are highly dependent on surface area. Changes in surface area through sintering during nanoparticle synthesis processes are also of interest for precision control of synthesised particles. Unfortunately, information on particle surface area and surface area dynamics is not readily obtainable through traditional particle mobility sizing techniques. In this study, we have experimentally determined the mobility diameter of transition regime agglomerates with 3, 4, and 5 primary particles. Agglomerates were produced by spray drying well-characterised polystyrene latex particles with diameters of 55, 67, 76, and 99 nm. Tandem differential mobility analysis was used to determine agglomerate mobility diameter by selecting monodisperse agglomerates with the same number of primary particles in the first DMA, and subsequently completely sintering the agglomerates in a furnace aerosol reactor. The size distribution of the completely sintered particles was measured by an SMPS system, which allowed for the determination of the number of primary particles in the agglomerates. A simple power law regression was used to express mobility diameter as a function of primary particle size and the number of primary particles, and had an excellent correlation (R2 = 0.9971) with the experimental data. A scaling exponent was determined from the experimental data to relate measured mobility diameter to surface area for agglomerates. Using this relationship, the sintering characteristics of agglomerates were also examined for varying furnace temperatures and residence times. The sintering data agreed well with the geometric sintering model (GSM) model proposed by Cho & Biswas (2006a) as well as with the model proposed Koch & Friedlander (1990) for sintering by viscous flow.  相似文献   

5.
Homogeneous ZnO Nanoparticles by Flame Spray Pyrolysis   总被引:2,自引:0,他引:2  
Zinc oxide (ZnO) nanoparticles were made by flame spray pyrolysis (FSP) of zinc acrylate–methanol–acetic acid solution. The effect of solution feed rate on particle specific surface area (SSA) and crystalline size was examined. The average primary particle diameter can be controlled from 10 to 20nm by the solution feed rate. All powders were crystalline zincite. The primary particle diameter observed by transmission electron microscopy (TEM) was in agreement with the equivalent average primary particle diameter calculated from the SSA as well as with the crystalline size calculated from the X-ray diffraction (XRD) patterns for all powders, indicating that the primary particles were rather uniform in diameter and single crystals. Increasing the solution feed rate increases the flame height, and therefore coalescence and/or surface growth was enhanced, resulting in larger primary particles. Compared with ZnO nanoparticles made by other processes, the FSP-made powder exhibits some of the smallest and most homogeneous primary particles. Furthermore, the FSP-made powder has comparable BET equivalent primary particle diameter with but higher crystallinity than sol–gel derived ZnO powders.  相似文献   

6.
Fractal Analysis of Surface Roughness of Particles in Porous Media   总被引:1,自引:0,他引:1       下载免费PDF全文
A fractal dimension for roughness height (RH) is introduced to characterize the degree of roughness or disorder of particle surface characters which significantly influence physical-chimerical processes in porous media. An analytical expression for the fractal dimension of RH on statistically self-similar fractal surfaces is derived and is expressed as a function of roughness parameters. The specific surface area (SSA) of porous materials with spherical particles is also derived, and the proposed fractal model for the SSA of particles with rough surfaces is expressed as a function of fractal dimension for RH and fractal dimension for particle size distribution, relative roughness of particle surface, and ratio of the minimum to the maximum particle diameters of spherical particles.  相似文献   

7.
The formation and growth of silicon-nanoparticles from silane in a microwave reactor was investigated. Experiments were performed for the following conditions: precursor concentration 380–2530 ppm, pressures of 20–30 mbar, microwave powers 120–300 W. The formed particles were examined in-situ with a particle mass spectrometer. Additionally, particles were collected on grids and analyzed by transmission electron microscopy, X-ray diffraction, and by determining the specific surface area by BET. The particle size was found to be in the range of 5–8 nm in diameter. A simple model was used to simulate the particle formation processes taking place inside the reactor. The microwave energy coupled into the reactor flow was treated as a spatially distributed energy source resulting in a local temperature increase. The particles were assumed to have a monodisperse size distribution. To allow an approximation of their shape they were characterized by their volume and surface area. The model takes nucleation, convection, coagulation, and coalescence into account. The fluid flow inside the microwave reactor was simulated with the commercial CFD-code Fluent.  相似文献   

8.
Al–Mn quasicrystal ultrafine particles can be produced by the advanced gas evaporation method (AGEM), which is a method of preparing ultrafine alloy particles by coalescence growth among the particles near the evaporation sources. We investigated the phase transition temperature from a quasicrystal to a stable crystal, by examining successive electron diffraction patterns of an ultrafine particle in an in situ experiment using a transmission electron microscope. In spite of the report that the Al86Mn14 quasicrystal transforms into the crystal phase at around 400–670 °C on thin film specimens, the quasicrystal ultrafine particle transformed at 800 °C, i.e., the quasicrystal ultrafine particle is more stable. Since the cross-sectional view of the surface oxide layer of the quasicrystal ultrafine particles can be easily observed, the surface oxides of η-Al2O3 and MnO were characterized as a result of the oxidation of residual atoms on the surface of the produced alloy particles including the quasicrystals. The conditions required for Al–Mn quasicrystal ultrafine particle formation by the AGEM can be estimated under the cooling rate of 105 K/s.  相似文献   

9.
We have prepared spherical non-agglomerated silver nanoparticles by an evaporation–condensation–dilution/cooling technique. Silver was evaporated from a crucible in a tubular flow reactor. A porous tube diluter was used to quench the carrier gas at the outlet of the reactor to enhance the formation of small particles and to suppress agglomeration and other particle growth mechanisms. The number size distribution of the prepared particles was measured with a differential mobility analyser–condensation nucleus counter combination and the size and the shape of the particles were analysed with transmission electron microscope. The system was modelled using a sectional aerosol dynamics computer code to estimate the importance of different aerosol processes. In all conditions the particles obtained were non-agglomerated and spherical. The mean particle diameter varied from 4 to 10-nm depending on boundary conditions. From the modelling studies it can be concluded that the nucleation rate is the most important parameter controlling the final particle size.  相似文献   

10.
11.
The aerosol morphologies of six types of particles plus one other from a different source were characterized quantitatively in terms of fractal dimensions based on boundary, projected area and surface roughness. Except for the particle with a smooth boundary, multifractal features were observed on the projected boundary of aerosols. It was found that the fractal dimensions of the aerosol boundaries in the high-resolution region ranged from 1.00 to 1.13, whereas those in the low-resolution region were distributed from 1.04 to 1.91. The compactness of a particle could be examined in terms of the fractal dimension of its projected area such that a solid particle gave a value of 2.00, a hollow particle with pores inside gave a value of 1.93 and a chain agglomerate gave an even lower value of 1.81. Aerosol topological features retrieved from the gray levels of a microimage were used to illustrate the difference in surface roughness or distinguish particle deposition on the substrate from that of agglomeration. A value of 2.49 was found for a hollow sphere in contrast to a value of 2.26 for a round pollen particle. Finally, a coordinate system was established by employing the computed fractal dimensions as axes to accommodate the particles characterized in this work and the Euclidean distance of a point from the origin was shown to be a potential composite index for aerosol morphology.  相似文献   

12.
The Fokker–Planck (FP) equation describing the dynamics of a single Brownian particle near a fixed external surface is derived using the multiple-time-scales perturbation method, previously used by Cukier and Deutch and Nienhuis in the absence of any external surfaces, and Piasecki et al. for two Brownian spheres in a hard fluid. The FP equation includes an explicit expression for the (time-independent) particle friction tensor in terms of the force autocorrelation function and equilibrium average force on the particle by the surrounding fluid and in the presence of a fixed external surface, such as an adsorbate. The scaling and perturbation analysis given here also shows that the force autocorrelation function must decay rapidly on the zeroth-order time scale 0, which physically requires N Kn1, where N Kn is the Knudsen number (ratio of the length scale for fluid intermolecular interactions to the Brownian particle length scale). This restricts the theory given here to liquid systems where N Kn1. For a specified particle configuration with respect to the external surface, equilibrium canonical molecular dynamics (MD) calculations are conducted, as shown here, in order to obtain numerical values of the friction tensor from the force autocorrelation expression. Molecular dynamics computations of the friction tensor for a single spherical particle in the absence of a fixed external surface are shown to recover Stokes' law for various types of fluid molecule–particle interaction potentials. Analytical studies of the static force correlation function also demonstrate the remarkable principle of force-time parity whereby the particle friction coefficient is nearly independent of the fluid molecule–particle interaction potential. Molecular dynamics computations of the friction tensor for a single spherical particle near a fixed external spherical surface (adsorbate) demonstrate a breakdown in continuum hydrodynamic results at close particle–surface separation distances on the order of several molecular diameters.  相似文献   

13.
Silver nanoparticles grown on a quartz substrate are investigated with optical and thermal desorption spectroscopy (TDS). Detailed information on the nanoparticle morphology is gained with new methods of data analysis. First, fitting the extinction spectra, using a comprehensive model, allows an estimation of the effective particle–particle distance. Second, the total surface area of the particles is determined with TDS of xenon. Third, the dependence of the plasmon resonance position on the amount of adsorbed xenon or benzene is used as a measure of the average particle size. The results for these three parameters, which are critical for potential applications of nanoparticle arrays, are shown to be mutually consistent. The methods demonstrated here are complementary to scanning probe techniques which characterize the particle morphology on a microscopic length scale.  相似文献   

14.
An experimental study on ignition and combustion of single particles was conducted at normal gravity (1-g) and microgravity (μ-g) for three high volatile coals with initial diameter of 1.5 and 2.0 mm, respectively. The non-intrusive twin-color pyrometry method was used to retrieve the surface temperature of the coal particle through processing the images taken by a color CCD camera. At the same time, a mathematical model considering thermal conduction inside the coal particle was developed to simulate the ignition process.Both experiments and modeling found that ignition occurred homogeneously at the beginning and then heterogeneously for the testing coal particles burning at μ-g. Experimental results confirmed that ignition temperature decreased with increasing volatile content and increasing particle size. However, contradicted to previous studies, this study found that for a given coal with certain particle size, ignition temperature was about 50–80 K lower at μ-g than that at 1-g.The model predictions agreed well with the μ-g experimental data on ignition temperature. The criterion that the temperature gradient in the space away from the particle surface equaled to zero was validated to determine the commence of homogeneous ignition. Thermal conduction inside the particle could have a noticeable effect for determining the ignition temperature. With the consideration of thermal conduction, the critical size for the phase transient from homogeneous to heterogeneous is about 700 μm at ambient temperature 1500 K and oxygen concentration 0.23.  相似文献   

15.
Dynamic light scattering signals from particles, exhibit fractal characteristics. This feature can be used to determine the particle size. The use of the fractal dimension, as a quantitative method to analyze the properties of dynamic light scattering signals from submicron particles, is presented. The analysis is performed directly on the time‐resolved scattered intensity, and the Box Dimensions of light scattering signals of particles with diameters 100, 200, 500 and 1000 nm. The experimental results show that the fractal dimensions of light scattering signals correlate well with particle size. In the submicron size range, the smaller the particles, the larger their fractal dimensions. Compared with the PCS technique, only several hundreds of samples are required in the fractal method. Therefore, the data processing is easily accomplished. However, this method only provides the mean particle size, but not the particle size distribution.  相似文献   

16.
This study fabricated the large area and optically transparent superhydrophobic silica based films on glass surface with optimized hardness. A silane coupling agent, tetraethoxysilane (TEOS), effectively bonds silica particles onto the glass substrate. Desired surface roughness was obtained by adjusting nano silica particles concentration of the precursors prepared by the sol-gel process. Silica suspension was coated onto the glass substrate by the air brushing methods. This method can deposit a uniform, transparent coating on the glass substrate efficiently. Diluting the precursor by adding ethanol or a mixture of D.I. water and ethanol further improved the transmittance and superhydrophobicity efficiency. The results showed that as the silica particle concentration and the thickness of the coating were increased, the surface roughness was enhanced. Rougher surface displayed a higher superhydrophobicity and lower transmittance. Therefore, the concentration of silica particle, volume of coatings, and the ratio of ethanol and D.I. water are of great importance to deposit a transparent, superhydrophobic coating on glass.  相似文献   

17.
We here use our nonperturbative, cluster decomposable relativistic scattering formalism to calculate photon–spinor scattering, including the related particle–antiparticle annihilation amplitude. We start from a three-body system in which the unitary pair interactions contain the kinematic possibility of single quantum exchange and the symmetry properties needed to identify and substitute antiparticles for particles. We extract from it a unitary two-particle amplitude for quantum–particle scattering. We verify that we have done this correctly by showing that our calculated photon–spinor amplitude reduces in the weak coupling limit to the usual lowest order, manifestly covariant (QED) result with the correct normalization. That we are able to successfully do this directly demonstrates that renormalizability need not be a fundamental requirement for all physically viable models.  相似文献   

18.
In this study a new method is investigated that enables a conductive surface to be modified so as to capture dispersed particles when the temperature is increased. Poly(NIPAM) (NIPAM is N‐isopropylacrylamide) was grafted from electrodeposited Laponite RD particles using surface‐initiated atom transfer radical polymerization (ATRP) to give a temperature‐responsive surface. This was used to capture dispersed polystyrene particles. In the first part of the study the conditions used to electrodeposit Laponite onto a carbon foam electrode were determined. The ability of the temperature‐responsive surface to capture dispersed polystyrene particles was investigated between 20 and 50°C. Temperature‐triggered particle capture was reversible or irreversible depending on the conditions used during ATRP. A high surface concentration of poly(NIPAM) on the particle electrodes is believed to increase the extent of polystyrene particle capture and also reversibility. A theoretical analysis in terms of interaction energy–distance curves is presented for the capture behavior. It is concluded that the temperature‐responsive surface has both electrostatic and steric contributions to the total interaction energy. The steric component (which originates from poly(NIPAM)) is temperature‐dependent and provides the basis for temperature‐triggered particle capture.  相似文献   

19.
A coherent scattering of electromagnetic waves by clusters of inertial Rayleigh particles in atmospheric turbulence is considered. A preliminary estimate based on the Maxwell-Garnett theory and the Rayleigh approximation for single clusters demonstrates an importance of the coherent scattering contribution. It is confirmed by a general solution in a combination with theoretical estimates for the two-point probability density function for low-inertia spherical particles in isotropic turbulence. An approximate analytical expression for the coefficient characterizing effect of coherent scattering by the particle clusters is derived. The calculations for small Stokes numbers typical of water droplets in cumulus clouds yield an estimate of the coherent scattering effect on the microwave radar reflection. The model suggested allows solving the inverse problem to determine the pair correlation function for cloud particles. It is expected to be important for the investigations on particle–turbulence interaction in the atmosphere. The theoretical model developed is true not only in the limit of low-inertia particles and can be potentially used at arbitrary Stokes numbers in other applications.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号