首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The time-dependent pulse-periodic action of a surface electric discharge on a flat-plate laminar boundary layer is simulated theoretically. The effect of the discharge is estimated within the framework of the numerical solution of the boundary value problem for the time-dependent two-dimensional compressible boundary layer with additional terms in the momentum and energy conservation equations simulating the force and thermal action of the discharge on the gas flow with allowance for the pressure gradient across the boundary layer induced by the corresponding body force component. The effect of certain parameters of the problem formulated above on the gas velocity induced by the discharge in the boundary layer is also estimated.  相似文献   

2.
流体边界层上电磁力的控制效应研究   总被引:13,自引:1,他引:13  
利用作用于流体边界层上的电磁体积力改变流体边界层的结构,研究电磁力对流场的控制 作用效果. 电极与磁极交替分布的电磁场激活板包覆在圆柱体表面置于流动的电解质溶液 中,产生的电磁力沿圆柱体表面分布,可以改变流体边界层的结构,从而实现对流场的控制. 用电磁屏蔽和时域控制的方法调整电磁力的时空分布参数,圆柱绕流分离点可以在前驻点和 后驻点之间变动,产生不同的控制效果. 流体边界层上的电磁力能连续控制圆柱绕流、尾流 涡街的形态. 正向电磁力具有较好的消涡、减震和减阻控制效应. 反向电磁力具有明显的增 涡控制效应,具有较强的制动控制效应,此时圆柱体表面涡量分布的对称性和稳定性被破坏.  相似文献   

3.
The unsteady viscous flow over a continuously permeable shrinking surface is studied. Similarity equations are obtained through the application of similar transformation techniques. Numerical techniques are used to solve the similarity equations for different values of the unsteadiness parameter, the mass suction parameter, the shrinking parameter and the Prandtl number on the velocity and temperature profiles as well as the skin friction coefficient and the Nusselt number. It is found that, different from an unsteady stretching sheet, dual solutions exist in a certain range of mass suction and unsteadiness parameters.  相似文献   

4.
Summary Three-dimensional unsteady laminar boundary layer near the planes of symmetry of sharp cones at angles of attack subject to large rates of injection is obtained numerically by using an implicit finite difference scheme in combination with the quasi-linearization technique. Several model gases are considered with Mach numbers, wall-to-total-enthalpy ratios, and cross-flow parameters spanning the ranges of main engineering interest. A detailed study has been made of the solutions in the symmetry plane, in order to increase the understanding of the problem. Various cases are considered, when the free-stream velocity and the surface mass transfer (injection) vary arbitrarily with time. The effects of viscous dissipation and the cross-flow parameter have also been discussed.This research has been partially supported by the Research and Development Centre for Iron and Steel, Steel Authority of India Ltd. The constructive comments of Professor G. Nath and Professor A. K. Lahiri are sincerely appreciated.  相似文献   

5.
Boundary layers that develop over a body in fluid flow are in most cases three-dimensional owing to the spin, yaw, or surface curvature of the body. Therefore, the study of three-dimensional (3D) boundary-layer transition is essential to work in practical aerodynamics. The present investigation is concerned with the problem of 3D boundary layers over a yawed body. A yawed cylinder model that represents the leading edge portion of a swept wing and the mechanism of crossflow instability are investigated in detail using hot-wire velocimetry and a flow visualization technique. As a result, traveling disturbances having frequencies f1 and f2, which differ by about one order of magnitude, are detected in the transition region. The phase velocities and directions of travel of those disturbances are measured. Results for the low-frequency disturbance f1 show qualitative coincidence with results numerically predicted for a crossflow unsteady disturbance. Nameley, F1 travels nearly spanwise to the yawed cylinder and very close to the cylinder wall. The results for the high-frequency disturbance f2 good agreement with the existing experimental results. The 2 disturbance is found to be the high-frequency inflectional secondary instability that appears in 3D boundary layer transition in general. A two-stage transition process, where stationary crossflow vortices appear as the primary instability and a traveling inflectional disturbance is generated as a secondary instability, was observed. Secondary instability seems to play a major role in turbulent transition.  相似文献   

6.
The stability of a unipolarly charged electrohydrodynamic boundary layer on a flat dielectric plate along which an electric current flows between electrodes located on the plate is investigated within the framework of the linear theory. The solution of the steady-state problem is obtained on the basis of methods developed earlier for conditions typical of aerodynamical experiments and various electric currents and electrode voltages. The effect of the interaction between perturbations of the electric and hydrodynamic flow parameters on the flow stability is estimated within the framework of the locally homogeneous approximation. This effect turns out to be insignificant under the conditions considered. It is shown that steady-state electrohydrodynamic action on the main flow makes it possible to obtain “accelerating” velocity profiles with increased absolute values of the second derivative in the transverse direction. This ensures a significant increase in the critical Reynolds numbers of loss of stability and a narrowing of the growing perturbation wavenumber range.  相似文献   

7.
8.
IntroductionThecylindricalparticletwo_phaseflowsareofparticularinterestintheprocessingofcompositematerials ,textileindustry ,papermaking ,chemicalengineering ,foodprocessing[1].Thecylindricalparticlesinaflowcanmakethereinforcementofmaterials,thechangeofphysicalpropertyformaterialsandthereductionofdrag .Arranaga[2 ]reportedthatdragreductioneffectsareupto 60 %inpipeflowsbyaddingcylindricalparticlestoflow .Thecylindricalparticleshavealsoeffectsonthemechanismsofflowstability .Theeffectofcylindric…  相似文献   

9.
The transformations, which are similar to Mangler’s transformations, are given in this paper. They change the entrance region flow of axially symmetrical laminar boundary layer between two parallel spherical surfaces into the flow of two-dimensional boundary layer, and simplify the problems. The simplified equations can be solved by the two-dimensional boundary layer theory and numerical methods. Therefore, a new way is opened up to solve the diffusive laminar flow in the entrance region between two parallel spherical surfaces.  相似文献   

10.
The turbulent fluid and particle interaction in the turbulent boundary layer for cross flow over a cylinder has been experimentally studied. A phase-Doppler anemometer was used to measure the mean and fluctuating velocities of both phases. Two size ranges of particles (30μm–60μm and 80μm–150μm) at certain concentrations were used for considering the effects of particle sizes on the mean velocity profiles and on the turbulent intensity levels. The measurements clearly demonstrated that the larger particles damped fluid turbulence. For the smaller particles, this damping effect was less noticeable. The measurements further showed a delay in the separation point for two phase turbulent cross flow over a cylinder. The project supported by the National Natural Science Foundation of China  相似文献   

11.
The hydrodynamic stability of a dilute disperse mixture flow in a quasi-equilibrium region of a boundary layer with a significantly nonuniform particle concentration profile is investigated. The mixture is described by a two-fluid model with an incompressible viscous carrier phase. In addition to the Stokes drag, the Saffman lifting force is taken into account in the interphase momentum exchange. On the basis of a numerical solution of the boundary-value problem for a modified Orr-Sommerfeld equation, neutral stability curves are analyzed and the dependence of the critical Reynolds number on the governing parameters is studied. It is shown that taking into account the particle concentration nonuniformity in the main flow and the Saffman lifting force significantly changes the stability limits of the two-phase laminar boundary layer flow. The effect of these factors on the boundary layer stability is considered for the first time.  相似文献   

12.
The influence of Coriolis force on heat transfer in a rotating transitional boundary layer has been experimentally investigated. The experiments have been conducted for local Görtler numbers up to 150. Heat transfer measurements have been performed for a flat plate with nearly uniform heat flux applied to the surface, where the temperature was measured by the thermochromic liquid crystal method. The results indicate that heat transfer is enhanced when Coriolis force acts towards the wall, i.e., on the pressure surface. The velocity measurements under equivalent conditions show that Coriolis instability induces counter-rotating longitudinal vortices which augment the lateral transport of the fluid on the pressure surface. On the other hand, the heat transfer on the suction surface remains at the same level as compared to the case without system rotation. As a consequence, the heat transfer coefficient on the pressure surface is 1.8 times higher than that measured on the suction surface when averaged over the measured surface.  相似文献   

13.
The singularities of the boundary layer equations and the laminar viscous gas flow structure in the vicinity of the convergence plane on sharp conical bodies at incidence are analyzed. In the outer part of the boundary layer the singularities are obtained in explicit form. It is shown that in the vicinity of a singularity a boundary domain, in which the flow is governed by the shortened Navier-Stokes equations, is formed; their regular solutions are obtained. The viscous-inviscid interaction effect predominates in a region whose extent is of the order of the square root of the boundary layer thickness, in which the flow is described by a two-layer model, namely, the Euler equations in the slender-body approximation for the outer region and the three-dimensional boundary layer equations; the pressure is determined from the interaction conditions. On the basis of an analysis of the solutions for the outer part of the boundary layer it is shown that interaction leads to attenuation of the singularities and the dependence of the nature of the flow on the longitudinal coordinate, but does not make it possible to eliminate the singularities completely.  相似文献   

14.
A numerical method developed for simulating three-dimensional incompressible boundary layer flow is presented. K-type transition up to the two-spike stage is simulated, and flow topologies at various stages of transition are determined. Comparison with flow topologies from other simulations of turbulent and transitioning flows is made. Financial support provided by Air Operations Division, Aeronautical and Maritime Research Laboratory, Defence Science and Technology Organisation, Australia.  相似文献   

15.
Summary By means of a combined method it is demonstrated for regular perturbation problems how the higher order terms of an asymptotic expansion may be determined from numerical solutions of the non-expanded basic equations.The method is applied to heat transfer effects in a laminar boundary layer and to the analysis of its stability. All first- and second-order coefficients of the problem are determined from numerical solutions of the basic set of equations.  相似文献   

16.
基于FLUENT的大气边界层风场LES模拟   总被引:1,自引:0,他引:1  
王婷婷  杨庆山 《计算力学学报》2012,29(5):734-739,746
通过拟周期边界条件、布置粗糙元和添加随机扰动等措施实现了大气边界层风场的LES模拟。对可能影响数值模拟结果的网格密度、粗糙元高度、随机数大小、随机数赋值方向及范围等主要参数进行分析,确定其影响规律,并据此生成满足目标要求的四类不同地貌大气边界层风场。结果表明,本文的模拟结果满足结构抗风计算的要求,验证了本文所采用的数值模拟方法的可行性,为后续进行结构绕流的大涡模拟提供了有价值的来流生成方法。  相似文献   

17.
An experimental study of the dynamic characteristics of flow past a two-dimensional circular cylinder is described. The fluctuationsoof wall shear stress, surface-pressure and velocity of the flow are measured with hot-film, hot-wire and pressure transducer. The frequency feature of fluctuations of wall shear stress is given. The cross-correlation functions of these fluctuations at any two points are calculated. The experimental results reveal that there is an overall syncronous fluctuation, at the shedding frequency, in boundary layer in the flow past a two-dimensional circular cylinder at subcritical Reynolds number.  相似文献   

18.
A spatially-evolving three-dimensional boundary layer, subjected to a streamwise-varying spanwise-homogeneous pressure gradient, equivalent to a body force, is investigated by way of direct numerical simulation. The pressure gradient, prescribed to change its sign half-way along the boundary layer, provokes strong skewing of the velocity vector, with a layer of nearly collateral flow forming close to the wall up to the position of maximum spanwise velocity. A wide range of flow-physical properties have been studied, with particular emphasis on the near-wall layer, including second-moments, major budget contributions and wall-normal two-point correlations of velocity fluctuations and their angles, relative to wall-shear fluctuations. The results illustrate the complexity caused by skewing, including a damping in turbulent mixing and a significant lag between strains and stresses. The study has been undertaken in the context of efforts to develop and test novel hybrid LES–RANS schemes for non-equilibrium near-wall flows, with an emphasis on three-dimensional near-wall straining. Fundamental flow-physical issues aside, the data derived should be of particular relevance to a priori studies of second-moment RANS closure and the development and validation of RANS-type near-wall approximations implemented in LES schemes for high-Reynolds-number complex flows.  相似文献   

19.
New data on the base pressure in a two-dimensional ow with a Mach number M = 5 are obtained for a wide range of variation of the normalized boundary-layer thickness in the flow-separation cross section. The test results are compared with Tanner’s theory, and a conclusion is made that this numerical model has to be corrected. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 46, No. 3, pp. 23–28, May–June, 2005.  相似文献   

20.
The flow past a cylinder in a channel with the aspect ratio of 2:1 for the upper convected Maxwell (UCM) fluid and the Oldroyd-B fluid with the viscosity ratio of 0.59 is studied by using the Galerkin/Least-square finite element method and a p-adaptive refinement algorithm. A posteriori error estimation indicates that the stress-gradient error dominates the total error. As the Deborah number, De, approaches 0.8 for the UCM fluid and 0.9 for the Oldroyd-B fluid, strong stress boundary layers near the rear stagnation point are forming, which are characterized by jumps of the stress-profiles on the cylinder wall and plane of symmetry, huge stress gradients and rapid decay of the gradients across narrow thicknesses. The origin of the huge stress-gradients can be traced to the purely elongational flow behind the rear stagnation point, where the position at which the elongation rate is of 1/2De approaches the rear stagnation point as the Deborah number approaches the critical values. These observations imply that the cylinder problem for the UCM and Oldroyd-B fluids may have physical limiting Deborah numbers of 0.8 and 0.9, respectively.The project supported by the National Natural Science Foundation of China (50335010 and 20274041) and the MOLDFLOW Comp. Australia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号