首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The high-resolution spectra of LiYF4 and LiLuF4 crystals doped with holmium are studied. It is shown that the weak satellites of some principal lines observed in the optical spectra belong to Ho3+-Ho3+ pair centers. The role played by local crystal-field distortions in the formation of the spectrum of pair centers is verified experimentally.  相似文献   

2.
EPR spectra of isostructural LiYF4 and LiLuF4 crystals doped by Dy3+, Er3+, and Ho3+ ions are measured at 4.2 K in the frequency range 40–800 GHz. The effects caused by isotopic disorder in the lithium sublattice, the random crystal field, and the interaction between paramagnetic impurity ions are detected and studied. The results of the measurements are used to determine the spectral characteristics of the compounds and the crystal field parameters. It is demonstrated that the formation of the isotope structure of the EPR signal is dominated by local deformations of the crystal lattice induced by mass defects.  相似文献   

3.
The optimum ratio of the numbers of the Y3+ and Lu3+ ions in LiF-LuF3-YF3 solid solutions at which the distribution (introduction) coefficient of Ce3+ ions is three to five times larger than that in LiYF4 and LiLuF4 crystals has been determined by the EPR and optical spectroscopy methods.  相似文献   

4.
The technique of calculation of the n-phonon transition rates between electronic sublevels of impurity rare earth ions in dielectric crystals is developed in the case when n>2. The n-phonon transition probabilities are calculated according to the 1st and 2nd orders of perturbation theory. The Hamiltonian of the electron-phonon interaction is constructed in the framework of the exchange charge model and developed as series in relative displacements of the rare earth ion and ligands. The contribution of the lattice anharmonicity on the probabilities of n-phonon transitions is taken into account. On the basis of the developed technique, the nonradiative relaxation rates of 4 G 7/2 multiplet of Nd3+ ions in LiYF4:Nd3+crystal and 3P1 multiplet of Pr3+ ions in CsCdBr3:Pr3+ crystal were computed. The results of our calculations show that the 2nd order terms in the expressions for the probabilities studied here are comparable with, and in some cases prevail over the 1st order terms. An account of lattice anharmonicity in case of LiYF4:Nd3+ crystal substantially modifies the corresponding multiphonon relaxation rates. The calculated nonradiative relaxation rates for both crystals agree well with the experimental data.  相似文献   

5.
Vacuum ultraviolet luminescence of Er3+ ions in LiYF4 and BaY2F8 crystals has been investigated. It is revealed that under excitation by 193 nm radiation from an ArF excimer laser the interconfigurational 5d–4f radiative transitions in Er3+ ions are observed. It is shown that from the LiYF4:Er crystal only the spin-forbidden luminescence (λ = 165 nm) is detected, whereas both the spin-forbidden (λ = 169 nm) and spin-allowed (λ = 160.5 nm) components are observed from the BaY2F8:Er crystal.  相似文献   

6.
The EPR spectra of Ce3+ impurity ions in LiYF4, LiLuF4, and LiTmF4 double-fluoride single crystals have been investigated at a frequency of ∼9.3 GHz in the temperature range 5–25 K. The effective g factors of the ground Kramers doublet of the cerium ions in three crystals are close to each other (g = 2.737, g = 1.475 for LiYF4:Ce3+). A superhyperfine structure of the EPR spectrum of Ce3+ ions in the LiTmF4 Van Vleck paramagnet has been observed in the external magnetic field B oriented along the crystallographic axis c (Bc). The superhyperfine structure of the EPR soectra of the Ce3+ ions in the LiYF4 and LiLuF4 diamagnetic matrices is resolved for Bc. Possible factors responsible for this pronounced difference in the properties of the systems studied have been discussed.  相似文献   

7.
Electron paramagnetic resonance (EPR) spectra of doped paramagnetic crystals LiLuF4:U3+ and LiYF4:Yb3+ have been investigated at a frequency of about 9.42 GHz in the temperature range of 10–20 K. The U3+ ion spectrum is characterized by g-factors g = 1.228 and g = 2.516, and contains the hyperfine structure due to the 235U isotope with nuclear spin I = 7/2 and natural abundance of 0.71%. The observed hyperfine interaction constants are A = 81 G and A = 83.8 G. Moreover, the spectrum reveals the well-resolved superhyperfine structure (SHFS) due to two groups of four fluorine ions forming the nearest surrounding of the U3+ ion. This SHFS contains up to nine components with the spacing between components being about 12.7 G. The SHFS is observed also in the EPR spectrum of the LiYF4:Yb3+ crystal; up to 17 components with spacing of about 3.7 G may be traced. Some parameters of the effective Hamiltonian of the SHF interaction are estimated, the contribution of covalent bonding of f-electrons with ligands into these parameters is discussed. Authors' address: Igor N. Kurkin, Kazan State University, Kremlevskaya ulitsa 18, Kazan 420008, Russian Federation  相似文献   

8.
The superhyperfine structure of the EPR spectra of impurity Nd3+ and U3+ ions in LiYF4, LiLuF4, and LiTmF4 double-fluoride single crystals has been observed and discussed. In LiYF4: Nd (g | = 1.987, g = 2.554) and LiTmF4: Nd, the superhyperfine structure is observed at the orientation of the external magnetic field B in parallel to the c axis of the crystals and consists of nine components with a splitting of ∼15.4 MHz. In LiYF4: U (g | = 1.149, g = 2.508) and LiLuF4: U, the superhyperfine structure is observed at both B | c and Bc and consists of nine and eleven components, respectively, with a splitting of ∼21.5MHz. It should be noted that the resolution of the superhyperfine structure of the EPR spectrum of LiLuF4: U3+ becomes significantly higher with a deviation from the orientation Bc.  相似文献   

9.
The magnetic and magnetodielectric properties of Ho0.5Nd0.5Fe3(BO3)4 ferroborate with the competing Ho–Fe and Nd–Fe exchange couplings have been experimentally and theoretically investigated. Step anomalies in the magnetization curves at the spin-reorientation transition induced by the magnetic field Bc have been found. The spontaneous spin-reorientation transition temperature TSR ≈ 8 K has been refined. The measured magnetic properties and observed features are interpreted using a single theoretical approach based on the molecular field approximation and calculations within the crystal field model of the rare-earth ion. Interpretation of the experimental data includes determination of the crystal field parameters for Ho3+ and Nd3+ ions in Ho0.5Nd0.5Fe3(BO3)4 and parameters of the Ho–Fe and Nd–Fe exchange couplings.  相似文献   

10.
We have studied the effect of doping with Eu2+ and Ce3+ ions on the photoluminescence (PL) of BaGa2Se4 crystals in the temperature range 77–300 K. We have established that the broad bands with maxima at wavelengths 456 nm and 506 nm observed in the photoluminescence spectra of BaGa2Se4:Ce3+ crystals are due to intracenter transitions 5d → 2F7/2 and 5d →2F5/2 of the Ce3+ ions, while the broad photoluminescence band with maximum at 521 nm in the spectrum of BaGa2Se4:Eu2+ is associated with 4f6 5d → 4f7 (8S7/2) transitions of the Eu2+ ion. We show that in BaGa2Se4:Eu2+,Ce3+ crystals, excitation energy is transferred from the Ce3+ ions to the Eu2+ ions.  相似文献   

11.
The observation of the superhyperfine structure (SHFS) in EPR spectra due to enhanced nuclear magnetism is reported. The X-band spectrum of a U3+ ion introduced into the Van Vleck paramagnet LiTmF4 is measured in the temperature range of 5–20 K and compared with the spectra of LiLuF4:U3+ and LiYF4:U3+ single crystals. The spectra reveal well-resolved and strikingly different SHFS. The SHFS of Li(Lu, Y)F4:U3+ is due to the fluorine ions forming the nearest surroundings of the U3+ ion. The main contribution to the SHFS of the U3+ spectrum in LiTmF4 comes from the Tm3+ ions with a highly enhanced nuclear gyromagnetic tensor. The text was submitted by the authors in English.  相似文献   

12.
The influence of the cation composition on the spectral kinetics of Ce3+ ions in double-fluoride crystals with a scheelite structure is studied. The importance of the photodynamic processes induced in these crystals by the exciting radiation is demonstrated. The difference in luminescence quantum efficiency between Ce3+ ions in LiYF4 and LiLuF4 crystals is found to be due to the different lifetimes of color centers produced in the samples by the exciting radiation and to the different efficiency of the free-carrier recombination at cerium impurity centers. It is shown that Yb3+ ions can increase the carrier recombination rate in the crystals.  相似文献   

13.
The isotope shifts of lines in the spectra of the LiLuF4:Ho3+ crystal in the range of the transitions 5 I 85 I 7, 5 I 6, and 5 I 5 caused by the isotopic disorder with respect to lithium are measured. The shifts of different lines amount to 0.01–0.036 cm?1. A comparison with the previously measured isotope shifts in the spectra of the LiYF4:Ho3+ crystal is made.  相似文献   

14.
Single crystals of double sodium-containing lanthanum and gadolinium molybdates doped with Tm3+ ions were synthesized by the Czochralski method. The spectroscopic properties of these crystals were investigated from the viewpoint of their use as active media in diode-pumped lasers. The polarized spectra of absorption on the 3 H 4 and 3 F 4 levels and the polarized spectra of luminescence due to the 3 F 4-3 H 6 laser transition were recorded, and the lifetimes of the 3 H 4 and 3 F 4 excited states of the Tm3+ ions were determined. The luminescence cross sections were calculated using the Füchtbauer-Ladenburg formula. The simulation of the decay curve of the 3 H 4 excited state according to the Golubov-Konobeev-Sakun method revealed that, in the crystals under investigation, the interaction between Tm3+ ions predominantly occurs through the dipole-dipole mechanism.  相似文献   

15.
We have grown crystals Na0.4Y0.6F2.2:Ho3+ (NYF:Ho3+) by the Bridgman-Stockbarger method. The optical spectra and luminescence kinetics of NYF:Ho3+ crystals have been studied. Based on the analysis of low-temperature absorption spectra, we determine the structure of the Stark splitting of holmium levels in NYF:Ho3+ crystals. From absorption spectra examined at T = 300 K, we calculate absorption cross-section spectra and oscillator strengths of transitions from the ground state of holmium to excited multiplets. We show that the absorption spectra of NYF:Ho3+ crystals consist of broad bands that lie in the UV, visible, and near-IR ranges. The most intense bands are observed in the visible range, they correspond to transitions 5 I 8 → (5 F 1, 5 G 6) and 5 I 8 → (5 F 4, 5 S 2), and their maximal absorption cross sections are σabsmax (λ = 450.3 nm) = 1.16 × 10−20 cm2 and σabsmax (λ = 535.1 nm) = 0.9 × 10−20 cm2. The intensity parameters Ω t have been calculated by the Judd-Ofelt method taking into account 10, 12, and 20 transitions from the 5 I 8 ground state to excited multiplets. We show that, with an increasing number of transitions taken into account in the calculation, the parameters Ω t somewhat increase. For 20 transitions, we have obtained the following intensity parameters: Ω2 = 0.97 × 10−20, Ω4 = 1.74 × 10−20, and Ω6 = 1.15 × 10−20 cm2. With these parameters, we have calculated the probabilities of radiative transitions, the radiative lifetimes, and the branching ratios. The rates of multiphoton nonradiative transitions have been estimated. The luminescence decay kinetics from excited holmium levels 5 F 3 (5 F 4, 5 S 2) and 5 F 5 have been studied upon selective excitation in the range of 490 nm, and the lifetimes of these levels have been experimentally determined. We find that the calculated and experimental rates of radiative and nonradiative relaxation from excited holmium levels agree well with each other. We show that, upon pumping in the range of 490 nm, the multiplet (5 F 4, 5 S 2) is populated as a result of the radiative and nonradiative excitation relaxation from the 5 F 3 level, while the lower-lying 5 F 5 level is populated due to direct radiative transitions 5 F 3, 25 F 5, obviating the cascade scheme 5 F 3 → (5 F 4, 5 S 2) ↝ 5 F 5. We conclude that NYF:Ho3+ crystals are processable; admit doping by holmium in high concentrations (up to 100%); and, with respect to all their radiative characteristics, can be considered as potential active media for solid-state continuously tunable lasers in the IR and visible ranges.  相似文献   

16.
Biocompatible upconversion nanoparticles with multifunctional properties can serve as potential nanoprobes for multimodal imaging. Herein, we report an upconversion nanocrystal based on lanthanum fluoride which is developed to address the imaging modalities, upconversion luminescence imaging and magnetic resonance imaging (MRI). Lanthanide ions (Yb3+ and Ho3+) doped LaF3 nanocrystals (LaF3 Yb3+/Ho3+) are fabricated through a rapid microwave-assisted synthesis. The hexagonal phase LaF3 nanocrystals exhibit nearly spherical morphology with average diameter of 9.8 nm. The inductively coupled plasma mass spectrometry (ICP-MS) analysis estimated the doping concentration of Yb3+ and Ho3+ as 3.99 and 0.41%, respectively. The nanocrystals show upconversion luminescence when irradiated with near-infrared (NIR) photons of wavelength 980 nm. The emission spectrum consists of bands centred at 542, 645 and 658 nm. The stronger green emission at 542 nm and the weak red emissions at 645 and 658 nm are assigned to 5S2 → 5I8 and 5F5 → 5I8 transitions of Ho3+, respectively. The pump power dependence of luminescence intensity confirmed the two-photon upconversion process. The nanocrystals exhibit paramagnetism due to the presence of lanthanide ion dopant Ho3+ and the magnetization is 19.81 emu/g at room temperature. The nanocrystals exhibit a longitudinal relaxivity (r 1) of 0.12 s?1 mM?1 and transverse relaxivity (r 2) of 28.18 s?1 mM?1, which makes the system suitable for developing T2 MRI contrast agents based on holmium. The LaF3 Yb3+/Ho3+ nanocrystals are surface modified by PEGylation to improve biocompatibility and enhance further functionalisation. The PEGylated nanocrystals are found to be non-toxic up to 50 μg/mL for 48 h of incubation, which is confirmed by the MTT assay as well as morphological studies in HeLa cells. The upconversion luminescence and magnetism together with biocompatibility enables the adaptability of the present system as a nanoprobe for potential bimodal imaging.  相似文献   

17.
18.
The structure of paramagnetic centers formed by impurity Ho3+ ions in synthetic forsterite is studied by submillimeter EPR spectroscopy in the frequency range 65–200 GHz. It is found that Ho3+ enters into the Mg2+ sublattice in the form of single ions and dimer centers. The concentration of dimer centers considerably exceeds the concentration of single ions, which points to the molecular self-organization of Ho3+ impurity ions into dimers during the growing of the crystals from melt. Possible structures of the dimer center are discussed. The parameters of the effective spin Hamiltonian describing the behavior of the electron-nuclear sublevels of the two lowest electronic levels of the Ho3+5I8 ground multiplet are determined for a single ion and a dimer center.  相似文献   

19.
Ho3+–Yb3+ co-doped Y2O3 nanocrystals were synthesized by firing hydroxy carbonate precursors. Yb3+-concentration-dependent up-conversion properties of Ho3+ in Y2O3 nanocrystals have been investigated. The relative intensity of up-converted red emission increases more quickly than that of the green and the near-infrared ones with the enhancement of the concentration of Yb3+. It is believed that the energy process 5 S 2 (5F4) (Ho) + 5 I 7 (Ho) →5 I 6 (Ho)+5 F 5 (Ho) plays an important role in the population of the 5 F 5 level of Ho3+. The result indicates that the intensity ratio of the green emission to the red one can be tuned by changing the sensitizer concentration. PACS 78.55.-m  相似文献   

20.
A method of high-resolution time-resolved optical spectroscopy using oscillations of the photon echo intensity in the presence of a perturbation, which splits the optical frequencies of the transitions of two or more ion subgroups, has been proposed and demonstrated. This method has been applied to systems in which the Zee-man effect is manifested. The transition frequencies of ions are switched by a pulsed magnetic field. Oscillations of the photon echo intensity were observed in LiLuF4:Er3+ and LiYF4:Er3+. The first minimum corresponding to the accumulated phase of the electric dipole moment π/2 is reached in the pulsed magnetic field with an amplitude of ~2 G at a duration of 30 ns. The Zeeman splitting in this field is ~10 MHz, which is much less than the laser spectral width (0.15 Å ~ 9 GHz). The g factor of the 4 F 9/2(I) excited state of the Er3+ ion in the LiLuF4 matrix has been determined in zero magnetic field. The comparison with the g-factor value found from the measurement of the absorption spectrum in a magnetic field of 8 kG has been performed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号