首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pulse-radiolytic studies were performed to determine the rate constants of intermolecular electron transfer (k(et)) from fullerenes (C(60), C(76), and C(78)) to a series of arene radical cations in dichloromethane. The one-electron oxidation potentials of the employed arenes-corresponding to the one-electron reduction potentials of arene pi-radical cations-were determined in dichloromethane to evaluate the driving forces of electron-transfer oxidation of fullerenes with arene pi-radical cations. The driving force dependence of log k(et) shows a pronounced decrease towards the highly exothermic region, representing the first definitive confirmation of the existence of the Marcus inverted region in a truly intermolecular electron transfer. Electron-transfer reduction of fullerenes with anthracene radical anion was also examined by laser flash photolysis in benzonitrile. The anthracene radical anion was produced by photoinduced electron transfer from 10,10'-dimethyl-9,9',10,10'-tetrahydro-9,9'-biacridine [(AcrH)(2)] to the singlet excited state of anthracene in benzonitrile. The rate constants of electron transfer (k(et)) from anthracene radical anion to C(60), C(70), and a C(60) derivative were determined from the decay of anthracene radical anion in the presence of various concentrations of the fullerene. Importantly, a significant decrease in the k(et) value was observed at large driving forces (1.50 eV) as compared to the diffusion-limited value seen at smaller driving forces (0.96 eV). In conclusion, our study presents clear evidence for the Marcus inverted region in both the electron-transfer reduction and oxidation of fullerenes.  相似文献   

2.
A hydrogen bond formed between the superoxide anion and the ammonium ion (NH4+) accelerates electron transfer from the C60 radical anion to oxygen significantly, whereas the tetra-n-butylammonium ion has no ability to form a hydrogen bond with the superoxidie anion, exhibiting no acceleration of the electron-transfer reduction of oxygen. The second-order rate constant of electron transfer from C60*- to O2 increases linearly with increasing concentration of NH4+. This indicates that O2*- produced in the electron transfer from C60 to O2 is stabilized by 1:1 complex formation between O2*- and NH4+. The 1:1 complex formed between O2*- and NH4+ was detected by ESR. The binding of O2*- with NH4+ results in a positive shift of the reduction potential of O2 with increasing concentration of NH4+, leading to the acceleration of electron transfer from C60*- to O2.  相似文献   

3.
Photoinduced electron-transfer processes in the systems of chlorophylls (Chl) (chlorophyll-a [Chl-a] and chlorophyll-b) and fullerenes (C60/C70) in both polar and non-polar solvents have been investigated with nanosecond laser photolysis technique, observing the transient spectra in the visible/near-IR regions. By the excitation of Chl in benzonitrile (BN) it has been proved that electron transfer takes place from the triplet excited states of Chl to the ground states of C60/C70. By the excitation of C70 in BN electron transfer takes place from the ground states of Chl to the triplet excited state of C70. In both Chl the rate constants and quantum yields for the electron-transfer processes are as high as those of zinc porphyrins and zinc phthalocyanines, indicating that the long alkyl chains of Chl play no role in retarding the electron transfer. The rate constant for the electron-mediating process from the radical anion of C70 to octylviologen dication yielding the octylviologen radical cation was evaluated. The back electron-transfer process from the viologen radical cation to the radical cation of Chl-a takes place in a longer time-scale, indicating that a photosensitized electron-transfer/electron-mediating cycle is achieved.  相似文献   

4.
The quenching processes of the exited triplet state of fullerene (3C60) by ferrocene (Fc) derivatives have been observed by the transient absorption spectroscopy and thermal lens methods. Although 3C60 was efficiently quenched by Fc in the rate close to the diffusion controlled limit, the quantum yields (phi(et)) for the generation of the radical anion of C60 (C60*-) via 3C60 were quite low even in polar solvents; nevertheless, the free-energy changes (deltaG(et)) of electron transfer from Fc to 3C60 are sufficiently negative. In benzonitrile (BN), the phi(et) value for unsubstitued Fc was less than 0.1. The thermal lens method indicates that energy transfer from 3C60 to Fc takes place efficiently, suggesting that the excited triplet energy level of Fc was lower than that of 3C60. Therefore, energy transfer from 3C60 to ferrocene decreases the electron-transfer process from ferrocene to 3C60. To increase the participation of electron transfer, introduction of electron-donor substituents to Fc (phi(et) = 0.46 for decamethylferrocene in BN) and an increase in solvent polarity (phi(et) = 0.58 in BN:DMF (1:2) for decamethylferrocene) were effective.  相似文献   

5.
A meso,meso-linked porphyrin trimer, (ZnP)3, as a light-harvesting chromophore, has been incorporated for the first time into a photosynthetic multistep electron-transfer model including ferrocene (Fc) as an electron donor and fullerene (C60) as an electron acceptor, to construct the ferrocene-meso,meso-linked porphyrin trimer-fullerene system Fc-(ZnP)3-C60. Photoirradiation of Fc-(ZnP)3-C60 results in photoinduced electron transfer from both the singlet and triplet excited states of the porphyrin trimer, 1(ZnP)3* and 3(ZnP)3*, to the C60 moiety to produce the porphyrin trimer radical cation-C60 radical anion pair, Fc-(ZnP)3*+-C60*-. Subsequent formation of the final charge-separated state Fc+-(ZnP)3-C60*- was confirmed by the transient absorption spectra observed by pico- and nanosecond time-resolved laser flash photolysis. The final charge-separated state decays, obeying first-order kinetics, with a long lifetime (0.53 s in DMF at 163 K) that is comparable with that of the natural bacterial photosynthetic reaction center. More importantly, the quantum yield of formation of the final charge-separated state (0.83 in benzonitrile) remains high, despite the large separation distance between the Fc+ and C60*- moieties. Such a high quantum yield results from efficient charge separation through the porphyrin trimer, whereas a slow charge recombination is associated with the localized porphyrin radical cation in the porphyrin trimer. The light-harvesting efficiency in the visible region has also been much improved in Fc-(ZnP)3-C60 because of exciton coupling in the porphyrin trimer as well as an increase in the number of porphyrins.  相似文献   

6.
螺二芴富勒烯吡咯烷衍生物的合成及电化学和光限幅性能   总被引:1,自引:1,他引:0  
设计合成了3种新颖的螺二芴键联富勒烯(C60/C70)吡咯烷衍生物, 其结构通过IR, 1H NMR, 13C NMR和MALDI-TOF进行确证, 其电化学性质用循环伏安法进行研究. 结果表明, C70衍生物6的还原电位较C60衍生物7分别向负电势移动0.1, 0.12和0.01 V. 同时, 使用纳秒和飞秒激光分别研究了化合物6, 7和8的光限幅性能, 其光限幅阈值分别为15.3, 23.3和13.7 J/cm2, 表明材料具有优异的光限幅性能.  相似文献   

7.
Electron transfer reduction of a highly electron-deficient fullerene, C60F18, to the defluorinated anion, C60F17- occurs efficiently by a relatively weak one-electron reductant, p-chloranil radical anion; the one-electron reduction potential of C60F18 is evaluated as 0.04 V (vs. SCE) by comparison of the rate constant for electron-transfer from 10,10'-dimethyl-9,9',10,10'-tetrahydro-9,9'-biacridine to C60F18 with those of other one-electron reductants.  相似文献   

8.
A meso,meso-linked porphyrin dimer [(ZnP)(2)] as a light-harvesting chromophore has been incorporated into a photosynthetic multistep electron-transfer model for the first time, including ferrocene (Fc), as an electron donor and fullerene (C(60)) as an electron acceptor to construct the ferrocene-meso,meso-linked porphyrin dimer-fullerene system (Fc-(ZnP)(2)-C(60)). Photoirradiation of Fc-(ZnP)(2)-C(60) results in photoinduced electron transfer from the singlet excited state of the porphyrin dimer [(1)(ZnP)(2)] to the C(60) moiety to produce the porphyrin dimer radical cation-C(60) radical anion pair, Fc-(ZnP)(2)(*+)-C(60)(*-). In competition with the back electron transfer from C(60)(*-) to (ZnP)(2)(*+) to the ground state, an electron transfer from Fc to (ZnP)(2)(*+) occurs to give the final charge-separated (CS) state, that is, Fc(+)-(ZnP)(2)-C(60)(*-), which is detected as the transient absorption spectra by the laser flash photolysis. The quantum yield of formation of the final CS state is determined as 0.80 in benzonitrile. The final CS state decays obeying first-order kinetics with a lifetime of 19 micros in benzonitrile at 295 K. The activation energy for the charge recombination (CR) process is determined as 0.15 eV in benzonitrile, which is much larger than the value expected from the direct CR process to the ground state. This value is rather comparable to the energy difference between the initial CS state (Fc-(ZnP)(2)(*+)-C(60)(*-)) and the final CS state (Fc(+)-(ZnP)(2)-C(60)(*-)). This indicates that the back electron transfer to the ground state occurs via the reversed stepwise processes,that is, a rate-limiting electron transfer from (ZnP)(2) to Fc(+) to give the initial CS state (Fc-(ZnP)(2)(*+)-C(60)(*-)), followed by a fast electron transfer from C(60)(*-) to (ZnP)(2)(*+) to regenerate the ground state, Fc-(ZnP)(2)-C(60). This is in sharp contrast with the extremely slow direct CR process of bacteriochlorophyll dimer radical cation-quinone radical anion pair in bacterial reaction centers.  相似文献   

9.
Fullerenes C60 and C70 have high electron affinity ( 2.6 - 2.8 ev ) and readily form anions on electronchemical reduction1, which were famous as electron acceptor in photo-excitation because of symmetrical shape, large size, and properties of its p - electron system2. After observation of molecular ferromagnetism3 in the tetrakis (dimethylamino ) ethylene salt of C60 as well as the occurrence of ultra-fast photoinduced electron transfer within the dimethyl aniline - C60 complex4, prompted us…  相似文献   

10.
Photoinduced electron transfer processes between fullerenes (C60 / C70) and N, N, N′, N′- tetra - ( p-methylphenyl ) - 4, 4′- diamino - 1, 1′- diphenyl ether ( TPDAE ) have been studied by nanosecond laser flash photolysis. Quantum yields and rate constants of electron transfer from TPDAE to excited triplet state of fullerenes (C60 / C70 ) in benzonitrile have been evaluated by observing the transient absorption bands in the near-IR region where the excited triplet state, radical anion of fullerenes ( C60 / C70 ) and radical cations of TPDAE appear.  相似文献   

11.
The reactions of hydrated electron (eaq-) with various radicals have been studied in pulse radiolysis experiments. These radicals are hydroxyl radical (*OH), sulfite radical anion (*SO3-), carbonate radical anion (CO3*-), carbon dioxide radical anion (*CO2-), azidyl radical (*N3), dibromine radical anion (Br2*-), diiodine radical anion (I2*-), 2-hydroxy-2-propyl radical (*C(CH3)2OH), 2-hydroxy-2-methyl-1-propyl radical ((*CH2)(CH3)2COH), hydroxycyclohexadienyl radical (*C6H6OH), phenoxyl radical (C6H5O*), p-methylphenoxyl radical (p-(H3C)C6H4O*), p-benzosemiquinone radical anion (p-OC6H4O*-), and phenylthiyl radical (C6H5S*). The kinetics of eaq- was followed in the presence of the counter radicals in transient optical absorption measurements. The rate constants of the eaq- reactions with radicals have been determined over a temperature range of 5-75 degrees C from the kinetic analysis of systems of multiple second-order reactions. The observed high rate constants for all the eaq- + radical reactions have been analyzed with the Smoluchowski equation. This analysis suggests that many of the eaq- + radical reactions are diffusion-controlled with a spin factor of 1/4, while other reactions with *OH, *N3, Br2*-, I2*-, and C6H5S* have spin factors significantly larger than 1/4. Spin dynamics for the eaq-/radical pairs is discussed to explain the different spin factors. The reactions with *OH, *N3, Br2*-, and I2*- have also been found to have apparent activation energies less than that for diffusion control, and it is suggested that the spin factors for these reactions decrease with increasing temperature. Such a decrease in spin factor may reflect a changing competition between spin relaxation/conversion and diffusive escape from the radical pairs.  相似文献   

12.
The electron transfer reaction between triplet anthraquinone-2-sulfonate and poly-guanylic acid (5') in CH3CN-H2O (97 : 3) has been investigated by 248 nm (KrF) laser flash photolysis. The transient absorption spectra and kinetics obtained from the interaction of triplet anthraquinone-2-sulfonate and poly[G] demonstrate that the primary ionic radical pair, radical cation of poly[G] and radical anion of anthraquinone-2-sulfonate have been detected simultaneously. The free energy changes in the process of the electron transfer were also calculated.  相似文献   

13.
The electron transfer reaction between triplet anthraquinone-2-sulfonate and poly- guanylic acid (5′) in CH3CN-H2O (97:3) has been investigated by 248 nm (KrF) laser flash photolysis. The transient absorption spectra and kinetics obtained from the interaction of triplet anthraquinone-2-sulfonate and poly[G] demonstrate that the primary ionic radical pair, radical cation of poly[G] and radical anion of anthraquinone-2-sulfonate have been detected simultaneously. The free energy changes in the process of the electron transfer were also calculated.  相似文献   

14.
The primary structure of 3'-imino[60]fulleryl-3'-deoxythymidine ions is studied using mass spectrometry both in the positive and negative modes. Interaction between the subunits is discussed using collision-induced dissociation (CID) spectra. Collisional activation with argon of the sodiated cations leads to the cleavage of the glycosidic bond and the transfer of a radical hydrogen from the deoxyribose to the thymine. The sodiated thymine is the only fragment observed for low collision energies in the positive mode. In the negative mode, two different ionization mechanisms take place, reduction and deprotonation in the presence of triethylamine. The 2.7 eV electron affinity of C60 and its huge cross section compared to the small cross section and predicted 0.44 eV electron affinity of the thymidine subunit most likely localize the radical electron on the fullerene. On the other hand, deprotonation of the 3'-azido-3'-deoxythymidine (AZT) is known to occur in N-3, the most acidic site of the nucleobase. Consequently, deprotonation causes the negative charge to be initially localized on the thymine. Both types of parent anions give the radical anion C60*- as fragment. The other fragments detected are the dehydrogenated 3'-imino[60]fulleryl-3'-deoxyribose anion, C60NH2-, C60N- and C60H-. Since in negative ion mass spectrometry all fragments include the [60]fullerene unit, this suggests that the fragmentation is driven by the electron affinity of the [60]fullerene, likely responsible for a charge transfer between the deprotonated thymine and the C60.  相似文献   

15.
曾和平 《有机化学》2003,23(5):447-451
富勒烯(C60/C70)与N,N,N’,N’-四-(对甲苯基)-4,4’-二胺-1,1’-二 苯硒醚(TPDASe)间在激光光诱导条件下,发生了分子间的电子转移过程.在可见- 近红外区(600-1200nm),观测到了TPDASe阳离子自由基、富勒烯(C60/C70)激发三 线态和阴离子自由基,在苯腈溶液中,观测瞬态谱测定了电子从TPDASe转移到富勒 烯(C60/C70)激发三线态的量子转化产率(Φet^T)和电子转移常数(Ket).  相似文献   

16.
TheinteractionofquinonephotonucleasewithDNAhasbeenwidelystUdied.Anthraquinonederivatives,inparticularthatofanhraquinone-2-sulfonatehasbeenusedascleavingagentforduPlexDNA1-5.Howevef,directobservationofexcitedionpairsofbiomoleculesespeciallytheStabilizedradicalcationofbiomoleculeishamPeredbytheoverwhelmingtransientabsorPtionofhydrogenbondedradicalanionofquinone.lnthiswork,theinteractionofpolylG]withtripletanthraquinone-2-sulfonateinCH,CN-H:O(97f3)viaelectrontransferreactionhasbeenachieved…  相似文献   

17.
To characterize fullerenes (C(60) and C(70)) as photosensitizers in biological systems, the generation of active oxygen species, through energy transfer (singlet oxygen (1)O(2)) and electron transfer (reduced active oxygen radicals such as superoxide anion radical O(2)(-)* and hydroxyl radical *OH), was studied by a combination of methods, including biochemical (DNA-cleavage assay in the presence of various scavengers of active oxygen species), physicochemical (EPR radical trapping and near-infrared spectrometry), and chemical methods (nitro blue tetrazolium (NBT) method). Whereas (1)O(2) was generated effectively by photoexcited C(60) in nonpolar solvents such as benzene and benzonitrile, we found that O(2)(-)* and *OH were produced instead of (1)O(2) in polar solvents such as water, especially in the presence of a physiological concentration of reductants including NADH. The above results, together with those of a DNA cleavage assay in the presence of various scavengers of specific active oxygen species, indicate that the active oxygen species primarily responsible for photoinduced DNA cleavage by C(60) under physiological conditions are reduced species such as O(2)(-)* and *OH.  相似文献   

18.
Photoinduced electron-transfer processes between fullerene (C60) and 1,8-bis(dimethylamino)naphthalene, which is called a proton-sponge (PS), have been investigated by means of laser flash photolysis in the presence and absence of CF3CO2H. For a mixture of C60 and PS, the transient absorption spectra showed the rise of the C60 radical anion with concomitant decay of the C60 triplet (3C60), suggesting that photoinduced intermolecular electron transfer occurs via 3C60 in high efficiency in polar solvent. For a covalently bonded C60-PS dyad, photoinduced intramolecular charge-separation process takes place via the excited singlet state of the C60 moiety, although charge recombination occurs within 10 ns. For both systems, electron-transfer rates were largely decelerated by addition of a small amount of CF3CO2H, leaving the long-lived 3C60. These observations indicate that the energy levels for charge-separated states of the protonated PS and C60 become higher than the energy level of the 3C60 moiety, showing low donor ability of the protonated PS. Thus, intermolecular electron-transfer process via 3C60 for C60-PS mixture and intramolecular charge-separation process via 1C60-PS for C60-PS dyad were successfully controlled by the combination of the light irradiation with a small amount of acid.  相似文献   

19.
The photophysical processes of 9,9-bis[4'-[2'-phenyl-5'-(3'-(methacryl-amido)phenyl)]-1',3',4'-oxadiazolylphenyl]fluorene (F-MAOP) formed by Heck reaction of 9,9-bis(4'-iodophenyl)fluorene (F-IP) and 2-phenyl-5-[3'-(methacrylamido)phenyl]-1,3,4-oxadiazole (OXD) have been carefully studied. The results show that the compound emits blue and blue-violet light and the emission spectra exhibit obvious solvent effect. With the increase of polarity of solvents, the fluorescence spectra change obviously and appear blue shift at room temperature. In addition, the light-emitting can be quenched by both electron donor (N,N-dimethylaniline, DMA) and electron acceptor (C60). When N,N-dimethylaniline is gradually added into the solution of F-MAOP, the emission intensities of fluorescence are unusually increased. But when the concentration of DMA beyond a certain scope, the emission intensities of fluorescence are gradually decreased. The dimolecular exciplex between F-MAOP and C60 are formed and the quenching effect follows the Stern-Volmer equation. Moreover, interaction between F-MAOP and carbon nanotubes (CNTs) is also studied by fluorescent quenching.  相似文献   

20.
Cycloreversion of 2-(p-cyanophenyl)-4-methyl-3-phenyloxetane (1) is achieved using 1-methoxynaphthalene (2) as electron-transfer photosensitizer. The experimental results are consistent with the reaction taking place from the singlet excited state of the sensitizer. Ring splitting of the radical anion 1*- occurs with cleavage of O-C2 and C3-C4 bonds, leading to products (acetaldehyde and p-cyanostilbene) different from the reagents used in the Paterno-Büchi synthesis of 1. The olefin radical anion involved in the electron-transfer process has been detected by means of laser flash photolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号