首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The temporal evolution of combustion flowfields established by the interaction between wedge-shaped bodies and explosive hydrogen-oxygen-nitrogen mixtures accelerated to hypersonic speeds in an expansion tube is investigated. The analysis is carried out using a fully implicit, time-accurate, computational fluid dynamics code that we recently developed to solve the Navier-Stokes equations for a chemically reacting gas mixture. The numerical results are compared with experimental data from the Stanford University expansion tube for two different gas mixtures at Mach numbers of 4.2 and 5.2. The experimental work showed that flow unstart occurred for both the Mach 4.2 cases. These results are reproduced by our numerical simulations and, more significantly, the causes for unstart are explained. For the Mach 5.2 mixtures, the experiments and numerical simulations both produced stable combustion. However, the computations indicate that in one case the experimental data were obtained during the transient phase of the flow; that is, before steady state had been attained. Received 7 February 2000/ Accepted 20 February 2001  相似文献   

2.
We study the temporal evolution of the combustion flowfield established by the interaction of ram accelerator-type projectiles with an explosive gas mixture accelerated to hypersonic speeds in an expansion tube. The Navier-Stokes equations for a chemically reacting gas mixture are solved in a fully coupled manner using an implicit, time accurate algorithm. The solution procedure is based on a spatially second order, total variation diminishing scheme and a temporally second order, variable-step, backward differentiation formula method. The hydrogen-oxygen-argon chemistry is modeled with a 9-species, 19-step mechanism. The accuracy of the solution method is first demonstrated by several benchmark calculations. Numerical simulations of expansion tube flowfields are then presented for two different geometries: an axisymmetric projectile and a ram accelerator configuration. The development of the shock-induced combustion process is followed. The temporal variations of the calculated thrust and drag forces on the ram accelerator projectile are also presented. In the axisymmetric projectile case, which was designed to ensure combustion only in the boundary layer, the radial extent of the flame front during the initial transient phase was surprisingly large. In the ram accelerator configuration the flame propagated upstream along both the projectile and tube wall boundary layers, resulting in unstart. Received 25 September 1996 / Accepted 15 January 1997  相似文献   

3.
An evaluation of some numerical methods for turbulent reacting flows in furnace-like geometries is carried out. The Reynolds averaged Navier–Stokes equations and the two-equation k–? model together with either finite-rate or infinite-rate reaction models are solved numerically. Either single- or multiple-step reactions together with the ‘eddy dissipation concept’ (EDC) are used to model reacting flows with finite reaction rates. The numerical scheme is finite difference based, together with a multi-grid method and a local grid refinement technique. These methods have been used to calculate the combustion of propane in a single- and multiple-burner configurations. In the former case, the sensitivity of the solution to variations in some model parameters (determining the reaction rate) and numerical parameters (mesh spacing) has been studied. It is noted that different dependent variables exhibit different levels of sensitivity to the variation in model parameters. Thus, calibration and validation of models for reacting flows require that one compares the most sensitive variables. For engineering purposes, on the other hand, one may calibrate and validate models with respect to the most relevant variables. Our conclusion is that since sensitivity of the temperature distribution is relatively mild, one can still use EDC-like methods in engineering applications where details of the temperature field are of minor importance.  相似文献   

4.
In the present paper, a multifluid model of two-phase flows with pulverized-coal combustion, based on a continuum-trajectory model with reacting particle phase, is developed and employed to simulate the 3-D turbulent two-phase flows and combustion in a new type of pulverized-coal combustor with one primary-air jet placed along the wall of the combustor. The results show that: (1) this continuum-trajectory model with reacting particle phase can be used in practical engineering to qualitatively predict the flame stability, concentrations of gas species, possibilities of slag formation and soot deposition, etc.; (2) large recirculation zones can be created in the combustor, which is favorable to the ignition and flame stabilization. Sponsored by the National Key Projects of Fundamental Research of China.  相似文献   

5.
A fully implicit algorithm has been developed to time integrate the equations of 2-D compressible viscous flow. The algorithm was constructed so as to optimize computational efficiency. The time-consuming block matrix inversions usually associated with implicit algorithms have been reduced to the trivial non-iterative inversion of four sets of scalar bidiagonal matrices. Thus, the algorithm requires virtually no more computer storage than an explicit algorithm. The efficient structure of the implicit algorithm is reflected in comparative timings which slow that it requires only a factor of two more computer time per point per time step than a typical explicit algorithm. Therefore, the algorithm allows more economical solution of given flows than existing explicit methods and also allows more difficult problems to be attempted using available computer resources. Application of the algorithm to the problem of shock-boundary layer interaction produces results consistent with both experimental measurements and other calculations.  相似文献   

6.
This paper describes possible fuel injection scheme for airbreathing engines that use hydrocarbon fuels. The basic idea is to inject fuel at the spike tip of the supersonic inlet to achieve mixing and combustion efficiency with a limited length combustion chamber. A numerical code, able to solve the full Navier–Stokes equations in turbulent and reacting flows, is employed to obtain numerical simulations of the thermo‐fluidynamic fields at different scramjet flight conditions, at Mach numbers of M=6.5 and 8. The feasibility of the idea of the upstream injection is checked for a simple axisymmetric configuration and relatively small size. The results are discussed in connection with the potential benefits deriving from the use of new ultra high temperature ceramics (UHTC). Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
This article focuses on the development of a discontinuous Galerkin (DG) method for simulations of multicomponent and chemically reacting flows. Compared to aerodynamic flow applications, in which DG methods have been successfully employed, DG simulations of chem-ically reacting flows introduce challenges that arise from flow unsteadiness, combustion, heat release, compressibility effects, shocks, and variations in thermodynamic proper-ties. To address these challenges, algorithms are developed, including an entropy-bounded DG method, an entropy-residual shock indicator, and a new formulation of artificial viscosity. The performance and capabilities of the resulting DG method are demonstrated in several relevant applications, including shock/bubble interaction, turbulent combustion, and detonation. It is concluded that the developed DG method shows promising performance in application to multicompo-nent reacting flows. The paper concludes with a discussion of further research needs to enable the application of DG methods to more complex reacting flows.  相似文献   

8.
A new implementation of surface tension effects in interfacial flow codes is proposed which is both fully implicit in space, that is the interface never has to be reconstructed, and also semi‐implicit in time, with semi‐implicit referring to the time integration of the surface tension forces. The main idea is to combine two previously separate techniques to yield a new expression for the capillary forces. The first is the continuum surface force (CSF) method, which is used to regularize the discontinuous surface tension force term. The regularization can be elegantly implemented with the use of distance functions, which makes the level set method a suitable choice for the interface‐tracking algorithm. The second is to use a finite element discretization together with the Laplace–Beltrami operator, which enables simple reformulation of the surface tension term into its semi‐implicit equivalent. The performance of the new method is benchmarked against standard explicit methods, where it is shown that the new method is significantly more robust for the chosen test problems when the time steps exceed the numerical capillary time step restriction. Some improvements are also found in the average number of nonlinear iterations and linear multigrid steps taken while solving the momentum equations. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
Noncircular jets in combustion systems   总被引:1,自引:0,他引:1  
Combustion dynamics of burners with corners were studied using Planar Laser Induced Fluorescence (PLIF) imaging. The effect of sharp corners on the air flow dynamics, shown earlier in cold flow tests, was also found in the reacting flow of a flame. The sharp corners interrupted the coherent structures generated in an axisymmetric shear flow. The combustion at the flat sections of the flame occurred in periodic, coherent large scale structures but was continuous and homogeneous in the vertices sections. The azimuthal structure of the noncircular flame changed in a pattern similar to that found in nonreacting flows. Combined regions of small- and large-scale mixing in the same flow, a unique feature of burners having sharp corners, is beneficial for combustion applications.  相似文献   

10.
基于全隐式无分裂算法求解三维N-S方程   总被引:1,自引:0,他引:1  
基于多块结构网格,本文研究和发展了三维N-S方程的全隐式无分裂算法.对流项的离散运用Roe格式,粘性项的离散利用中心型格式.在每一次隐式时间迭代中,运用GMRES方法直接求解隐式离散引起的大型稀疏线性方组.为了降低内存需求以及矩阵与向量之间的运算操作数,Jacobian矩阵的一种逼近方法被应用在本文的算法之中.计算结果与实验结果基本吻合,表明本文的全隐式无分裂方法是有效和可行的.  相似文献   

11.
姜宗林 《力学进展》2021,51(1):130-140
先进发动机是航空工业的核心技术,而吸气式高超声速发动机一直是宇航飞行技术研发的首位难题.发动机的性能依赖于其能量转换模式和燃烧组织方法,相关理论研究具有基础性和启发性意义.论文首先讨论了超声速燃烧,它一直是超燃冲压发动机技术的理论基础.然后综述了相关研究进展,提出了吸气式高超声速冲压推进技术的3个临界条件,或者称为临界...  相似文献   

12.
利用已知初始时刻的信息,建立一种可以取到任意阶高精度的多项式加速度单步隐式算法。在该隐式方法中,待采解方程纽系数矩阵中质量阵的系数远远大于阻尼阵和剐度阵的系数,略去非对角阻尼阵和非对角刚度阵对方程组的影响,得到一种近似平衡多项式加速度动力显式计算方法。此方法的精度主要由加速度多项式插值的项数、步长、质量阵的每件数、质量刚度比(质量阵和刚度阵的范数之比)决定。在此基础上给出了这种算法的通式,进行了精度分析,结果表明:如果时间步长h足够短,n次加速度近似平衡动力显式算法的精度可以达到O(hn+1)。算例采用5次加速度近似平衡显式算法,计算结果的精确性证明了本算法的可行性。  相似文献   

13.
The diffusion flame of an afterburner as a function of the air-fuel ratio is analysed by employing the SIMPLE-C algorithm and the turbulence κ-κ model. In the present analysis, better combustion efficiency of an afterburner with a slightly fuel-lean mixture is shown. The velocity, fuel mass fraction, temperature and combustion efficiency distributions of reacting flow in an afterburner with two V-gutter flameholders as a function of the air–fuel ratio are also discussed and compared. The calculated results in the present analysis can be applied to the fundamental study of reacting flow in an afterburner.  相似文献   

14.
A finite difference–pseudo‐spectral (FD–PS) algorithm is developed to simulate the viscous fingering instability in high mobility‐ratio (MR) miscible displacements. This novel algorithm uses the fully implicit alternating‐direction implicit (ADI) method combined with a Hartley based pseudo‐spectral method to solve the Poisson equation involving the streamfunction and the vorticity. In addition, under‐relaxation in the iterative evaluation of the streamfunction is adopted. The new code allowed to model successfully the viscous fingering instability for mobility‐ratios as high as 1800, and new non‐linear viscous fingering mechanisms are discovered. A systematic analysis of the effects of the MR, the Peclet number and the aspect ratio on the finger growth is conducted. It is found that the growth of the interfacial instability accelerates with increase in the MR and Peclet number. At larger values of these parameters the increased stiffness of the corresponding numerical problem caused significant increase in the computational time as it required finer grids and smaller time steps to capture the fine structures of the viscous fingers. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
Computed tomography (CT) has the potential to greatly enhance our understanding of the turbulent flow structures, the combustion chemistry, and the interactions between the two, which challenge us in our attempts to understand and model the details of turbulent combustion. Here, we present high-resolution and fully three-dimensional measurements of the flame surface of a turbulent reacting flow. The CT-reconstructed images show the flame front, at a single instant in time, of a turbulent, premixed propane/air flame. The significance of this powerful experimental tool is to provide new insight into turbulent combustion, allowing for the development of cleaner burning, higher power, and more efficient combustors.  相似文献   

16.
燃烧室两相流场亚网格燃烧模型的研究   总被引:2,自引:0,他引:2  
在三维任意曲线坐标系下采用不同的亚网格燃烧模型对环形燃烧室火焰筒气液两相湍流瞬态反应流进行大涡模拟.计算中所采用的数学度模型有:k方程亚网格尺度模型估算亚网格湍流黏性;热通量辐射模型估算辐射换热,分别采用亚网格EBU燃烧模型(E-A model)、亚网格二阶矩输运方程模型(SOM)和亚网格二阶矩代数模型(SOM-A)估算化学反应速率.并在非交错网格系统下气相采用SIMPLE算法和混合差分格式求解,液相采用Lagrange处理,并用PSIC算法对其进行求解.通过实验结果和计算结果的比较,表明在三维任意曲线坐标系下对燃烧室火焰简两相湍流油雾燃烧流场进行大涡模拟,3种不同的亚网格燃烧模型都能真实反映两相湍流化学反应流流动及实际燃烧过程,而采用亚网格二阶矩输运方程模型稍优于其他两种亚网格燃烧模型.  相似文献   

17.
An attempt is made to study in some detail the turbulent mixing of reacting (propane) and inert jets (air and carbon dioxide) in a channel. The results are given of an experimental investigation into diffusion combustion in a channel, and these are compared with calculated data obtained using a semiempirical theory of turbulence. Such a comparison makes it possible to estimate the applicability of this theory for calculating the characteristics of diffusion combustion in a channel.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 25–33, July–August, 1980.We thank V. R. Kuznsatsov and A. N. Sekundov for great interest in the work and for discussing the results and V. I. Rasshchupkin for assisting in the experiments.  相似文献   

18.
一种求解化学非平衡流动的新型解耦算法   总被引:2,自引:0,他引:2  
在一种新型化学非平衡流解耦算法框架下,将WENO5M 格式用于化学非平衡流动的流场计算. 为了验证所发展算法的准确性,对多个典型算例进行了计算. 首先计算了Oran 的反射激波诱导爆轰实验,并考虑了不同化学反应机理和网格收敛性的影响,得到的计算结果与实验和其他文献给出的计算结果符合很好,并且由于采用了一种最近提出的氢氧燃烧机理,模拟得到的实验中各个事件发生的相对时间相比于与以前的计算结果与实验符合得更好. 然后计算了二维H2/O2/Ar 爆轰,计算得到的胞格结构与实验和其他模拟结果符合较好,并得到了详细的爆轰发展历程. 由于这种新型解耦算法的特点,仅需对现有的基于量热完全气体的可压缩流动计算程序做很小的修改,即能改造成化学反应流动计算程序,从而进一步体现了这种解耦算法的优势.   相似文献   

19.
Detonation combustion of a hydrogen-air mixture entering an axisymmetric convergent-divergent nozzle at a supersonic velocity is considered under atmospheric conditions at altitudes up to 24 km. The investigation is carried out on the basis of the two-dimensional gasdynamic Euler equations for a multicomponent reacting gas. The limiting altitude ensuring detonation combustion in a Laval nozzle of given geometry is numerically established for freestream Mach numbers 6 and 7. The possibility of the laser initiation of detonation in a supersonic flow of a stoichiometric, preliminarily heated hydrogen-air mixture is experimentally studied. The investigation is carried out in a shock tube under conditions simulating a supersonic flow in the nozzle throat region.  相似文献   

20.
Detonation combustion of hydrogen-air mixtures entering an axisymmetric convergent-divergent nozzle at a supersonic velocity is considered. The nozzle geometry does not ensure gas self-ignition; for this reason, forced ignition is used, which, under certain conditions, leads to the formation of stationary detonation combustion in the case of both uniform and nonuniform hydrogen distribution at the channel entry. The nonlinear problem of the stability of these combustion regimes against periodic disturbances of the hydrogen concentration in the oncoming flow is numerically solved. The study is performed on the basis of the two-dimensional gasdynamic Euler equations for a multicomponent reacting gas. A detailed model of chemical reactions is used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号