首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The flow structure in a developing air-water two-phase flow was investigated experimentally along a large vertical pipe (inner diameter, Dh: 0.48 m, ratio of length of flow path L to Dh: about 4.2). Two air injection methods (porous sinter injection and nozzle injection) were adopted to realize an extremely different flow structure in the developing region. The flow rate condition in the test section was as follows: superficial air velocity: 0.02–0.87 m/s (at atmospheric pressure) and superficial water velocity: 0.01–0.2 0.01–0.2 m/s, which covers the range of bubbly to slug flow in a small-scale pipe (Dh about 0.05 m).

No air slugs occupying the flow path were recognized in this experiment regardless of the air injection methods even under the condition where slug flow is realized in the small-scale pipe. In the lower half of the test section, the axial distribution of sectional differential pressure and the radial distribution of local void fraction showed peculiar distributions depending on the air injection methods. However, in the upper half of the test section, the effects of the air injection methods are small in respect of the shapes of the differential pressure distribution and the phase distribution. The comparison of sectional void fraction near the top of the test section with Kataoka's correlation indicated that the distribution parameter of the drift-flux model should be modeled including the effect of Dh and the bubble size distribution is affected by the air injection methods. The bubble size distribution is considered to be affected also by L/Dh based on comparison of results with Hills' correlation.  相似文献   


2.
刘赵淼  刘佳  申峰 《力学学报》2015,47(2):223-230
研究了不同重力条件下90°弯管内气液两相流流型分布形态及流动特性. 通过建立90°弯管内气液两相流流动的三维数学物理模型,采用VOF 方法,对10-6g0, 10-4g0, 10-2g0, 1g0 (g0= 9.8m/s2) 重力下的90°弯管内气液两相流流型分布特征、截面空隙率、滑速比及气相尾部最大斜向角进行了比较分析. 研究结果表明:所建立的模型能够正确模拟不同重力条件下90°弯管内气液两相流流型和截面空隙率,并得到气液两相弯管二次流与单相二次流的不同特性. 随着重力水平的提高,90°弯管对气相流型的影响作用减弱,气相整体向弯管内侧积聚靠拢,弯管对尾部的斜向作用减弱.   相似文献   

3.
为了探究W25Fe25Ni25Mo25高熵合金弹体在侵彻过程中宏观变形行为与材料微细观结构之间的联系, 基于对两相流动模型的简化, 建立了考虑软、硬相密度、流速以及浓度差异的等截面直管两相流动演化模型. 类比宏观状态下侵彻弹体头部材料的流入流出特性, 选定分析区域, 建立两相细观结构下材料在分析区域的流入流出关系, 再结合细观结构演化方程, 给出了分析区域中浓度演化结果, 提出了表征材料浓度演化速率的流动稳定系数t/llength. 为了对比不同细观结构弹体的侵彻行为, 选取典型两相材料钨铜合金(W70Cu30), 基于小口径弹道枪发射平台开展两种弹体侵彻半无限钢靶试验, 对比两种合金弹体细观结构演化行为. 结果表明, 硬相浓度分布总体上体现“中心浓, 边缘稀”的特点; 硬相的浓度越高, 密度越大, 驱动速度越快, 则流动稳定系数t/llength值越小, 侵彻过程中弹体的流动稳定性越好, 弹体头部材料越容易形成连续的塑性流动带. 等截面直管两相流动演化模型可用于描述侵彻过程中弹体头部材料的流动稳定性, 揭示了侵彻过程中弹体头部变形与细观两相结构之间的关联机制.   相似文献   

4.
Gas–liquid two-phase flow in a microfluidic T-junction with nearly square microchannels of 113 μm hydraulic diameter was investigated experimentally and numerically. Air and water superficial velocities were 0.018–0.791 m/s and 0.042–0.757 m/s, respectively. Three-dimensional modeling was performed with computational fluid dynamics (CFD) software FLUENT and the volume of fluid (VOF) model. Slug flow (snapping/breaking/jetting) and stratified flow were observed experimentally. Numerically predicted void fraction followed a linear relationship with the homogeneous void fraction, while experimental values depended on the superficial velocity ratio UG/UL. Higher experimental velocity slip caused by gas inlet pressure build-up and oscillation caused deviation from numerical predictions. Velocity slip was found to depend on the cross-sectional area coverage of the gas slug, the formation of a liquid film and the presence of liquid at the channel corners. Numerical modeling was found to require improvement to treat the contact angle and contact line slip, and could benefit from the use of a dynamic boundary condition to simulate the compressible gas phase inlet reservoir.  相似文献   

5.
Flow regime transitions due to cavitation in the flow through an orifice   总被引:4,自引:0,他引:4  
This paper presents both experimental and theoretical aspects of the flow regime transitions caused by cavitation when water is passing through an orifice. Cavitation inception marks the transition from single-phase to two-phase bubbly flow; choked cavitation marks the transition from two-phase bubbly flow to two-phase annular jet flow.

It has been found that the inception of cavitation does not necessarily require that the minimum static pressure at the vena contracta downstream of the orifice, be equal to the vapour pressure liquid. In fact, it is well above the vapour pressure at the point of inception. The cavitation number [σ = (P3Pv)/(0.5 pV2); here P3 is the downstream pressure, Pv is the vapour pressure of the liquid, ρ is the density of the liquid and V is the average liquid velocity at the orifice] at inception is independent of the liquid velocity but strongly dependent on the size of the geometry. Choked cavitation occurs when this minimum pressure approaches the vapour pressure. The cavitation number at the choked condition is a function of the ratio of the orifice diameter (d) to the pipe diameter (D) only. When super cavitation occurs, the dimensionless jet length [L/(D - d); where L is the dimensional length of the jet] can be correlated by using the cavitation number. The vaporization rate of the surface of the liquid jet in super cavitation has been evaluated based on the experiments.

Experiments have also been conducted in which air was deliberately introduced at the vena contracta to simulate the flow regime transition at choked cavitation. Correlations have been obtained to calculate the critical air flow rate required to cause the flow regime transition. By drawing an analogy with choked cavitation, where the air flow rate required to cause the transition is zero, the vapour and released gas flow rate can be predicted.  相似文献   


6.
内分液流型调控管依靠微尺度网孔阻气通液的毛细力学特性,调控气液两相间歇流型以实现传热强化.基于Lockhart-Martinelli 分相模型以及Zuber-Findlay 漂移流动模型,建立描述内分液竖直管内流体动力特性的一维数学模型. 采用模型求解实验工况,计算结果与实验结果误差均在20% 以内. 计算发现,液速对流动现象起决定作用,而气速影响通过丝网的渗透程度. 在定性分析基础上,采用三角立方插值与最小二乘B 样条拟合获得了流动特性与气速、液速的定量函数关系. 据此得出结论,当Rel < 693 7 时,一定出现第1 类工况;当Rel > 693 7,且Reg < 67 时,可能会出现第2 类工况,此时较低的气速会促进第2 类工况的出现. 根据建立的模型与拟合关系式可实现内分液调控管的优化设计.   相似文献   

7.
Experimental data from horizontal air–water slug flows were obtained in a test facility which was a 34 mm internal diameter, 10 m long Plexiglas pipe connected to the 90° branch arms from a T-junction. The test points were located on the flow pattern map in the proximity of the transition lines which separates different flow patterns. Capacitive probes with helical and concave plate sensors were used to quantify the dynamic liquid holdup in each branch. They were combined with Venturi nozzles + differential pressure transmitters in each outlet branch for measuring the two-phase mass flow rates. The dynamic characteristics of the slug flow splitting in a T-junction were studied from the acquired signals. Diaphragm straight-through type valves were used in the run and in the lateral branch arms to imitate equipments consuming the two-phase flow after the T-junction. This assembly can also be used as a gas–liquid separation system. The results showed different mechanisms acting on the slug flow division phenomenon. Liquid accumulation into the run branch, between the TJ and the control valve, caused more gas to come to the lateral branch.  相似文献   

8.
基于液滴或气泡的多相微流控是近年来微流控技术中快速发展的重要分支之一.本文利用高速显微摄影技术和数字图像处理技术对T型微通道反应器内气液两相流动机制及影响因素进行实验研究.实验采用添加表面活性剂的海藻酸钠水溶液作为液相,空气作为气相.研究T型微通道反应器内气液两相流型的转变过程,并根据微通道内气泡的生成频率和生成气泡的长径比对气泡流进行分类.研究发现当前的进料方式下,可以观测到气泡流和分层流2种流型,且依据气泡生成频率和微通道内气泡的长径比可将气泡流划分为分散气泡流、短弹状气泡流和长弹状气泡流3种类型,并基于受力分析确定3种气泡流的形成机制分别为剪切机制、剪切-挤压机制和挤压机制.考察不同液相黏度和表面张力系数对不同类型气泡流范围的影响规律.结果表明:液相黏度相较于表面张力系数而言,对气泡流生成范围影响更大.给出不同类型气泡流流型转变条件的无量纲关系式,实现微通道生成微气泡过程的可控操作.   相似文献   

9.
The present study investigates experimentally two-phase flow patterns and pressure drop of ethanol and CO2 in a converging or diverging rectangular microchannel. The two-phase flow pattern visualization is made possible using a high speed video camera. The increased superficial gas velocity due to the acceleration effect and the large pressure drop in a converging channel may result in the elongation of bubbles in slug flow, while the decreased superficial velocity owing to the deceleration effect and the possible pressure rise in the diverging channel may cause shortening of bubbles in slug flow significantly. For both types of channel, the collision and merger of two consecutive bubbles may take place and result in necking of bubbles. Two-phase flow pressure drop in the converging microchannel increases approximately linearly with the increasing liquid or gas flow rate with the frictional pressure drop being the major contributor to the channel pressure drop. In the diverging microchannel, the deceleration effect results in the pressure rise and counteracts the frictional pressure drop. Consequently, for low liquid flow rates the channel pressure drop increases only slightly with the gas flow rate while it is low and a reversed trend appears while it is high. For high liquid flow rates the effect of increasing gas flow rate on channel pressure drop is much more significant; a more significant reverse trend of the effect of gas flow rate is present in the region of high gas flow rates. The two-phase frictional multiplier in the converging or diverging microchannel is quite insensitive to the liquid flow rate and can be fitted very well within ±15% based on the Lockhart–Martinelli equation with a modified Chisholm parameter for the diverging microchannel and together with a modified coefficient for the X−2 term for the converging microchannel.  相似文献   

10.
The velocity of elongated vapor bubbles exiting two horizontal micro-evaporator channels with refrigerant R-134a was studied. Experiments with tube diameters of 509 and 790 μm, mass velocities from 200 to 1500 kg/m2 s, vapor qualities from 2% to 19% and a nominal saturation temperature of 30 °C were analyzed with a fast, high-definition digital video camera. It was found from image processing of numerous videos that the elongated bubble velocity relative to that of homogeneous flow increased with increasing bubble length until a plateau was reached, and also increased with increasing channel diameter and increasing mass velocity. Furthermore an analytical model developed for a diabatic two-phase flow, has been proposed that is able to predict these trends. In addition, the model shows that the relative elongated bubble velocity should decrease with increasing pressure, which is consistent with the physics of two-phase flow.  相似文献   

11.
In the present experimental study, the pressure drop of the two-phase dry-plug flow (dry wall condition at the gas portions) in round mini-channels was investigated. The air–water mixtures were flowed through the round mini-channels made of polyurethane and Teflon, respectively, with their inner diameters ranging from 1.62 to 2.16 mm. In the dry-plug flow regime, the pressure drop measured became larger either by increasing the liquid superficial velocity or by decreasing the gas superficial velocity due to the increase of the number of the moving contact lines in the test section. In such a case, the role of the moving contact lines turned out to be significant. Therefore, a pressure drop model of dry-plug flow was proposed through modification of the dynamic contact angle analysis taking account of the energy dissipation by the moving contact lines, which represents the experimental data within the mean deviation of 4%.  相似文献   

12.
Flow regime transition criteria are of practical importance for two-phase flow analyses at reduced gravity conditions. Here, flow regime transition criteria which take the frictional pressure loss effect into account were studied in detail. Criteria at reduced gravity conditions were developed by extending an existing model from normal gravity to reduced gravity conditions. A comparison of the newly developed flow regime transition criteria model with various experimental datasets taken at microgravity conditions showed satisfactory agreement. Sample computations of the model were performed at various gravity conditions, such as 0.196, 1.62, 3.71 and 9.81 m/s2 corresponding to micro-gravity and lunar, Martian and Earth surface gravity, respectively. It was found that the effect of gravity on bubbly–slug and slug–annular (churn) transitions in a two-phase flow system was more pronounced at low liquid flow conditions, whereas the gravity effect could be ignored at high mixture volumetric flux conditions. While for the annular flow transitions due to flow reversal and onset of droplet entrainment, higher superficial gas velocity was obtained at higher gravity level.  相似文献   

13.
An experimental investigation has been undertaken to understand the phase split of nitrogen gas/non-Newtonian liquid two-phase flow passing through a 0.5 mm T-junction that oriented horizontally. Four different liquids, including water and aqueous solutions of carboxymethyl cellulose (CMC) with different mass concentrations of 0.1, 0.2 and 0.3 wt%, were employed. Rheology experiments showed that different from water, CMC solutions in this study are pseudoplastic non-Newtonian fluid whose viscosity decreases with increasing the shear rate. The inlet flow patterns were observed to be slug flow, slug–annular flow and annular flow. The fraction of liquid taken off at the side arm for nitrogen gas/non-Newtonian liquid systems is found to be higher than that for nitrogen gas/Newtonian liquid systems in all inlet flow patterns. In addition, with increasing the pseudoplasticity of the liquid phase, the side arm liquid taken off increases, but the increasing degree varies with each flow pattern. For annular flow, the increasing degree is much greater than those for slug and slug–annular flows.  相似文献   

14.
Direct contact heat transfer between water and a heat transfer oil was investigated under non-boiling conditions in co-current turbulent flow through a horizontal concentric annulus. The ratio of the inner pipe diameter to the outer pipe diameter (aspect ratio) κ = 0.730−0.816; total liquid velocity (mixture velocity) VT = 0.42−1.1 m/s; inlet oil temperature Toi = 38−94°C; oil volume fraction in the flowing mixture φo = 0.25−0.75 were varied and their effects on the overall volumetric heat transfer coefficient Uv were determined at constant interfacial tension of 48 dynes/cm.

It was found that, in each concentric pipe set, the overall volumetric heat transfer coefficient increased with increasing dispersed phase volume fraction at each constant mixture velocity and reached a maximum at around φo = φw ≈ 0.5. The maximum Uv values increased with increasing total liquid velocity and decreasing aspect ratio of the annulus. The volumetric heat transfer coefficient was also found to increase with increasing inlet oil temperature and increasing total liquid velocity but to decrease with length along the test section keeping all other parameters constant. Empirical expressions for the volumetric heat transfer coefficient were obtained within the ranges of the experimental parameters.  相似文献   


15.
1. Introduction The design of gas distributor has a major influence on gas flow patterns, dumping and dead zones. It has been demonstrated that maldistribution will occur if the distribu-tor has a low pressure drop, that is, some parts of the bed will receive much less gas than others, and may be tem-porarily or permanently defluidized, while the gas forms semi-permanent spouts or channels in other parts. There-fore, maldistribution is undesirable in industry. For example, the temperature in a…  相似文献   

16.
The effect of tube diameter on two-phase frictional pressure drop was investigated in circular tubes with inner diameters of 0.6, 1.2, 1.7, 2.6 and 3.4 mm using air and water. The gas and liquid superficial velocity ranges were 0.01-50 m/s and 0.01-3 m/s, respectively. The gas and liquid flow rates were measured and the two-phase flow pattern images were recorded using high-speed CMOS camera. Unique flow patterns were observed for smaller tube diameters. Pressure drop was measured and compared with various existing models such as homogeneous model and Lockhart-Martinelli model. It appears that the dominant effect of surface tension shrinking the flow stratification in the annular regime is important. It was found that existing models are inadequate in predicting the pressure drop for all the flow regimes visualized. Based on the analysis of present experimental frictional pressure drop data a correlation is proposed for predicting Chisholm parameter “C” in slug annular flow pattern. For all other flow regimes Chisholm’s original correlation appears to be adequate except the bubbly flow regime where homogeneous model works well. The modification results in overall mean deviation of pressure drop within 25% for all tube diameters considered. This approach of flow regime based modification of liquid gas interaction parameter appears to be the key to pressure drop prediction in narrow tubes.  相似文献   

17.
下倾管-立管水气严重段塞流数值模拟   总被引:1,自引:0,他引:1  
高嵩  尤云祥  李巍  胡天群  俞忠 《力学学报》2011,43(3):468-475
针对海洋油气传输中常见的下倾管-立管系统, 采用Brackbill模型模拟气液相界面间表面张力, VOF方法追踪气液两相运动界面, 提出了管内气液两相流数值模拟方法. 在低气液相进口折算速度下, 数值模拟了该种管型下的严重段塞流动现象, 分析了相关物理参数的变化特性. 结果表明, 在严重段塞流下, 管内流型流态、压力、液塞运动速度、立管出口气液相平均速度、下倾管及立管内含气率等均具有明显周期性特征, 而且一个周期内严重段塞流可分为4个阶段, 进而给出了各阶段中相关参数的变化特性. 数值模拟结果与相关文献中的实验结果吻合良好,表明了该数值模拟方法的有效性.   相似文献   

18.
Current research has expanded on the existing database by conducting air–water experiments in a 0.125 m regular T-junction and a 0.125/0.076 m reduced T-junction. Inserts, cut to 30° and 45°, protruded from the side arm into the main pipe of the junction at different protrusion depths and their effect on the two-phase flow phase split at the junction measured. Depending on the approaching flow regime, inserts placed at the junction were seen to either enhance the partial phase separation occurring at the T-junction or promote a more equal flow split between the two downstream arms.  相似文献   

19.
This study addresses gas–liquid two-phase flows in polymer (PMMA) micro-channels with non-molecularly smooth and poorly wetting walls (typical contact angle of 65°) unlike previous studies conducted on highly wetting molecularly smooth materials (e.g., glass/silicon). Four fundamentally different topological flow regimes (Capillary Bubbly, Segmented, Annular, Dry) were identified along with two transitory ones (Segmented/Annular, Annular/Dry) and regime boundaries were identified from the two different test chips. The regime transition boundaries were influenced by the geometry of the two-phase injection, the aspect ratio of the test micro-channels, and potentially the chip material as evidenced from comparisons with the results of previous studies. Three principal Segmented flow sub-regimes (1, 2, and 3) were identified on the basis of quantified topological characteristics, each closely correlated with two-phase flow pressure drop trends. Irregularity of the Segmented regimes and related influencing factors were addressed and discussed. The average bubble length associated with the Segmented flows scaled approximately with a power law of the liquid volumetric flow ratio, which depends on aspect ratio, liquid superficial velocity, and the injection system. A simplified semi-empirical geometric model of gas bubble and liquid plug volumes provided good estimates of liquid plug length for most of the segmented regime cases and for all test-channel aspect ratios. The two-phase flow pressure drop was measured for the square test channels. Each Segmented flow sub-regime was associated with different trends in the pressure drop scaled by the viscous scale. These trends were explained in terms of the quantified flow topology (measured gas bubble and liquid plug lengths) and the number of bubble/plug pairs. Significant quantitative differences were found between the two-phase pressure drop in the polymer micro-channels of this study and those obtained from previous glass/silicon micro-channel studies, indicating that the effect of wall surface properties is important. Pressure drop trends on the capillary scale along gas bubbles extracted from the measurements in square micro-channels indicated a linear dependence on the Capillary number and did not agree with those predicted by highly idealized theory primarily because explicit and implicit assumptions in the theory were not relevant to practical conditions in this study.  相似文献   

20.
Measurements of gas holdups in bubble columns of 0.16, 0.30 and 0.33 m diameter were carried out. These columns were operated in co-current flow of gas and liquid phases and in semibatch mode. The column of 0.33 m diameter was operated at elevated pressures of up to 3.6 MPa. Nitrogen was employed as the gas phase and deionized water, aqueous solutions of ethanol and acetone and pure acetone and cumene as the liquid phase. The effects of differing liquid properties, gas density (due to elevated pressure), temperature, column diameter and superficial liquid velocity on gas holdup were studied. The gas holdup measurements were utilized by differential pressure measurements at different positions along the height of the bubble columns which allowed for the identification of axial gas holdup profiles. A decrease of gas holdup with increasing column diameter and an increase of gas holdup with increasing pressure was observed. The effect of a slightly decreasing gas holdup with increasing liquid velocity was found to exist at smaller column diameters. The use of organic solvents as the liquid phase resulted in a significant increase in gas holdup compared to deionized water. It is found that published gas holdup models are mostly unable to predict the results obtained in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号