首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Axisymmetric regimes of flows of an inhomogeneous fluid in the boundary layer near a free surface are calculated for a nonuniform temperature distribution on this surface. For the fluid motion equations written in the Oberbeck-Boussinesq approximation, the leading terms of asymptotic expansions of solutions of a steady-state problem are constructed. It is shown that in the presence of local cooling of the free surface and a rising outer fluid stream, as a result of a bifurcation, a pair of rotational regimes may develop in a thin boundary layer near the free surface, with no rotation observed outside this layer. No bifurcation of rotation was detected in the case of local heating of the free surface.  相似文献   

2.
The characteristics and mechanism of unsteady aerodynamic heating of a transient hypersonic boundary layer caused by a sudden change in surface temperature are studied. The complete time history of wall heat flux is presented with both analytical and numerical approaches. With the analytical method, the unsteady compressible boundary layer equation is solved. In the neighborhood of the initial and final steady states, the transient responses can be expressed with a steady-state solution plus a perturbation series. By combining these two solutions, a complete solution in the entire time domain is achieved. In the region in which the analytical approach is applicable, numerical results are in good agreement with the analytical results, showing reliability of the methods. The result shows two distinct features of the unsteady response. In a short period just after a sudden increase in the wall temperature, the direction of the wall heat flux is reverted, and a new inflexion near the wall occurs in the profile of the thermal boundary layer. This is a typical unsteady characteristic. However, these unsteady responses only exist in a very short period in hypersonic flows, meaning that, in a long-term aerodynamic heating process considering only unsteady surface temperature, the unsteady characteristics of the flow can be ignored, and the traditional quasi-steady aerodynamic heating prediction methods are still valid.  相似文献   

3.
Sufficient conditions are found for the existence of similar solutions of the mixed convection flow of a Powell-Eyring fluid over a nonlinear stretching permeable sur- face in the presence of magnetic field. To achieve this, one parameter linear group trans- formation is applied. The governing momentum and energy equations are transformed to nonlinear ordinary differential equations by use of a similarity transformation. These equations are solved by the homotopy analysis method (HAM) to obtain the approximate solutions. The effects of magnetic field, suction, and buoyancy on the Powell-Eyring fluid flow with heat transfer inside the boundary layer are analyzed. The effects of the non- Newtonian fluid (Powell-Eyring model) parameters ε and δon the skin friction and local heat transfer coefficients for the cases of aiding and opposite flows are investigated and discussed. It is observed that the momentum boundary layer thickness increases and the thermal boundary layer thickness decreases with the increase in ε whereas the momentum boundary layer thickness decreases and thermal boundary layer thickness increases with the increase in δ for both the aiding and opposing mixed convection flows.  相似文献   

4.
Taking into account the slip flow effects, Newtonian heating, and thermal radiation, two-dimensional magnetohydrodynamic (MHD) flows and heat transfer past a permeable stretching sheet are investigated numerically. We use one parameter group transformation to develop similarity transformation. By using the similarity transformation, we transform the governing boundary layer equations along with the boundary conditions into ordinary differential equations with relevant boundary conditions. The obtained ordinary differential equations are solved with the fourth-fifth order Runge-Kutta- Fehlberg method using MAPLE 13. The present paper is compared with a published one. Good agreement is obtained. Numerical results for dimensionless velocity, temperature distributions, skin friction factor, and heat transfer rates are discussed for various values of controlling parameters.  相似文献   

5.
A mathematical study is developed for the electro-osmotic flow of a nonNewtonian fluid in a wavy microchannel in which a Bingham viscoplastic fluid model is considered. For electric potential distributions, a Poisson-Boltzmann equation is employed in the presence of an electrical double layer(EDL). The analytical solutions of dimensionless boundary value problems are obtained with the Debye-Huckel theory, the lubrication theory, and the long wavelength approximations. The effects of the Debyelength parameter, the plug flow width, the Helmholtz-Smoluchowski velocity, and the Joule heating on the normalized temperature, the velocity, the pressure gradient, the volumetric flow rate, and the Nusselt number for heat transfer are evaluated in detail using graphs. The analysis provides important findings regarding heat transfer in electroosmotic flows through a wavy microchannel.  相似文献   

6.
This paper deals with a theoretical (numerical) analysis of the effects that blowing/injection and suction have on the steady mixed convection or combined forced and free convection boundary layer flows over a vertical slender cylinder with a mainstream velocity and a wall surface temperature proportional to the axial distance along the surface of the cylinder. Both cases of buoyancy forces aid and oppose the development of the boundary layer are considered. Similarity equations are derived and their solutions are dependent upon the mixed convection parameter, the non-dimensional transpiration parameter and the curvature parameter, as well as of the Prandtl number. Dual solutions for the previously studied mixed convection boundary layer flows over an impermeable surface of the cylinder are shown to exist also in the present problem for aiding and opposing flow situations.  相似文献   

7.
Where turbulent liquid jets are used for cutting and mining purposes the pressure generated by impact must be maximized. Initial jet behaviour has an important influence on subsequent jet impact pressures at medium range. Nozzle wall boundary layer history has a strong influence on the initial jet, and certain boundary layer features can be linked to poor jet performance. The procedure outlined in this paper was developed to eliminate new nozzle designs or changes in operating conditions on the grounds of badly behaved nozzle boundary flow. The design procedure consists of a potential flow analysis and a boundary layer analysis coupled to empirical correlations for boundary layers in accelerated flows. The procedure is exemplified by application to the design of a nozzle to be used for the specific purpose of mining china clay.  相似文献   

8.
Experimental investigations have been devoted to the study of scaling law of coarse-grained dissipation rate structure function for velocity and temperature fluctuation of non-isotropic and inhomogeneous turbulent flows at moderate Reynolds number. Much attention has been paid to the case of turbulent boundary layer, which is typically the non-istropic and inhomogeneous trubulence because of the dynamically important existence of organized coherent structure burst process in the near wall region . Longitudinal velocity and temperature have been measured at different vertical positions in turbulent boundary layer over a heated and unheated flat plate in a wind tunnel using hot wire anemometer. The influence of non-isotropy and inhomogeneity and heating the wall on the scaling law of the dissipation rate structure function is studied because of the existence of organized coherent structure burst process in the near wall region . The scaling law of coarse-grained dissipation rate structure function is foun  相似文献   

9.
Some characteristics of the variation in the linear dimensions of the flow separation zones on conical bodies with expanding conical skirts and of variation of the pressure within these zones as a function of variation of the Mach number, Reynolds number, and intensity of the disturbance that causes the boundary layer separation are examined. Experiments were conducted in laminar, transitional, and turbulent flows in flow separation regions. The interaction of viscous and nearly inviscid flows is quite common. This phenomenon occurs in flow past a concave corner, when a compression shock impinges on a boundary layer, and in many other cases. The characteristics of this phenomenon in flow about two-dimensional bodies have been investigated experimentally in [1, 2] and other studies. Attempts have been made to analyze the interaction of compression shocks with the boundary layer theoretically. In “free” separated flows, when the points of separation and reattachment of the boundary layer are not fixed (for example, on a flat plate with a long wedge attached to it), theoretical studies are usually made within the framework of the boundary layer theory with use of the approximate integral methods [3, 4]. In this article we examine some results from studies of free separated flows on conical bodies with conical skirts in laminar, transitional, and turbulent flows (Fig. 1).  相似文献   

10.
Laminar boundary layer flows behind constant speed shock waves moving into a dusty gas are analyzed numerically. The basic equations of two-phase flows are derived in shock fixed coordinates and solved by an implicit finite-difference method for the side wall boundary layer in a dusty gas shock tube. The development of the boundary layer and resulting velocity and temperature profiles, respectively, for the gas and particles are given from the shock front to far downstream. The effects of diaphragm pressure ratio, mass loading ratio of particles and particle size upon the flow properties are discussed in detail.This article was processed using Springer-Verlag TEX Shock Waves macro package 1990.  相似文献   

11.
利用可压缩线性稳定性理论研究了超声速混合层考虑壁面影响流动时的失稳特性. 基本流场选取了具有不同速度特征的2 股均匀来流,进入存在上下壁面的流道中. 混合层与边界层的距离为1~3 个边界层厚度,其中壁面取为绝热壁. 分析了该流动在超声速情况下的稳定性特征,同时还讨论了不同波角下的三维扰动波的演化特点,并与二维扰动波进行了比较和分析. 研究结果表明,在此流动情况下,边界层流动和混合层流动的稳定性特征同时存在,并互有影响,其流动稳定性特征既有别于单纯的平板边界层,也有别于单纯的平面混合层,呈现出了新的稳定性特征.  相似文献   

12.
A great number of experimental data indicating shock wave/boundary layer interactions in internal or external supersonic flows were reviewed to make clear the mechanism of the interaction and to decide the onset of shock-induced separation. The interesting conclusions were obtained for the considerably wide range of flow geometries that the onset of separation is independent of the flow geometries and the boundary layer Reynolds number. It is found that the pressure rise necessary to separate the boundary layer in supersonic external flows could be applied to such internal flows as overexpanded nozzles or diffusers. This is due to the fact that the separation phenomenon caused by shock wave/boundary layer interactions is processed through a supersonic deceleration. The shock-induced separation in almost all of interacting flow fields is governed by the concept of free interaction, and the onset of shock-induced separation is only a function of the Mach number just upstream of shock wave. However, physical scales of the produced separation are not independent of the downstream flow fields.  相似文献   

13.
超声速边界层/混合层组合流动的稳定性分析   总被引:1,自引:0,他引:1  
利用可压缩线性稳定性理论研究了超声速混合层考虑壁面影响流动时的失稳特性. 基本流场选取了具有不同速度特征的2 股均匀来流,进入存在上下壁面的流道中. 混合层与边界层的距离为1~3 个边界层厚度,其中壁面取为绝热壁. 分析了该流动在超声速情况下的稳定性特征,同时还讨论了不同波角下的三维扰动波的演化特点,并与二维扰动波进行了比较和分析. 研究结果表明,在此流动情况下,边界层流动和混合层流动的稳定性特征同时存在,并互有影响,其流动稳定性特征既有别于单纯的平板边界层,也有别于单纯的平面混合层,呈现出了新的稳定性特征.   相似文献   

14.
Structural similarities between samples of individual, apparently random structures in various wall-bounded turbulent flows are examined using a template-matching technique. Two-dimensional structural patterns obtained by particle image velocimetry in a turbulent boundary layer are sampled along streamwise lines to extract one-dimensional spatial series that are used as templates. These templates are correlated with time series data obtained in turbulent pipe flow, turbulent channel flow, and atmospheric boundary layer flow in order to determine the frequency and coherency with which similar structures occur. The results indicate that a small ensemble of templates from one flow can be concatenated to represent a large fraction of the entire velocity-time history of each of the other flows by using episodes during which the various templates correlate well. Thus, within the pipe flow, channel flow, and atmospheric boundary layer, one frequently finds detailed time series segments that coincide closely, i.e., in fine detail, with a handful of templates found in a laboratory boundary layer. This type of similarity, which includes seemingly random, fine details at large and small scales, is much stronger than similarity based on statistical comparisons. The individual templates that work best, i.e., those that most frequently yield episodes of high correlation, are segments of hairpin-vortex packets. The high frequency with which these particular structures occur suggests that they are common features of all wall-bounded turbulent flows, including turbulent flows at very high Reynolds number such as the atmospheric boundary layer.  相似文献   

15.
In many flows the turbulence is weakly compressible even at large Mach number. For example, in a compressible boundary layer Ma<5, the differences relative to an incompressible boundary layer understood as being caused by density variations that accompany variations temperature across the layer. Turbulent fluctuations in a boundary layer are therefore expected to be dominated by the effects nonconstant temperature, and low Mach number theories in which fluctuations are not dominant should be applicable to the fluctuating field. However, the analysis of compressible boundary layer DNS data reveals presence of significant acoustic fluctuations. To distinguish acoustic and thermal effects, a numerical decomposition procedure compressible boundary layer fluctuations is applied to determine the and nonacoustic fluctuations. Except for very near the wall, where decomposition procedure is not valid, it is found that the fluctuations are only weakly coupled to the acoustic fluctuations at numbers as high as 6. Received 13 March 2000 and accepted 21 May 2001  相似文献   

16.
Direct numerical simulations of the Navier–Stokes equations have been carried out with the objective of studying turbulent boundary layers in adverse pressure gradients. The boundary layer flows concerned are of the equilibrium type which makes the analysis simpler and the results can be compared with earlier experiments and simulations. This type of turbulent boundary layers also permits an analysis of the equation of motion to predict separation. The linear analysis based on the assumption of asymptotically high Reynolds number gives results that are not applicable to finite Reynolds number flows. A different non-linear approach is presented to obtain a useful relation between the freestream variation and other mean flow parameters. Comparison of turbulent statistics from the zero pressure gradient case and two adverse pressure gradient cases shows the development of an outer peak in the turbulent energy in agreement with experiment. The turbulent flows have also been investigated using a differential Reynolds stress model. Profiles for velocity and turbulence quantities obtained from the direct numerical simulations were used as initial data. The initial transients in the model predictions vanished rapidly. The model predictions are compared with the direct simulations and low Reynolds number effects are investigated.  相似文献   

17.
Turbulent plane boundary layer flows of an incompressible fluid are considered. A refinement of the known Coles wake law is proposed. This refinement makes it possible to ensure the smooth matching of the turbulent boundary layer velocity profile with the outer flow and to extend the range of validity of the law to the case of large positive pressure gradients. The accuracy of the analytical approximation obtained is verified by comparison with the known experimental equilibrium velocity profiles. Using the approximation proposed, a relation for calculating the cross-sectional distribution of the Reynolds stress in the equilibrium boundary layer is derived. The pressure distributions for which the equilibrium turbulent boundary layer flows are single- and two-valued are distinguished.__________Translated from Izvestiya Rossiiskoi Academii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, 2005, pp. 89–101.Original Russian Text Copyright © 2005 by Mikhailov.  相似文献   

18.
高超声速再入体表面热流计算   总被引:8,自引:0,他引:8  
运用非结构网格计算外部无粘流场,并结合边界层内粘性主导区域的工程算法,计算高超声速飞行器的气动加热。通过求解三维Euler方程确定复杂外形飞行器的边界层外缘参数,在理论与经验公式的基础上,利用局部相似性解的方法计算了钝锥和钝双锥外形有攻角再入的表面热流,并与国内外文献的NS方程数值计算结果和风洞试验结果进行了对比,三者的结果吻合较好。  相似文献   

19.
The majority of the studies which consider the flow of a dissociating gas in a turbulent boundary layer are devoted to the investigation of either frozen or equilibrium flows on a flat plate.The frozen turbulent boundary layer has been studied by Dorrance [1], Kutateladze and Leont'ev [2], and Lapin and Sergeev [3]. A study of the effect of catalytic recombination processes at the plate surface on the heat transfer in a frozen turbulent boundary layer was made by Lapin [4].Kosterin and Koshmarov [5], Ginzburg [6], Dorrance [7], and Lapin [8] have studied the turbulent boundary layer on a plate in equilibrium dissociating gas.The calculation of the heat transfer in a turbulent boundary layer on a catalytic plate surface with nonequilibrium dissociation was made by Kulgein [9]. In this study the nonequilibrium nature of the dissociation process was taken into account only in the laminar sublayer, while the flow in the turbulent core was considered frozen. The solution was found numerically using a computer by means of a laborious iteration process.The present paper reports a method for calculating the turbulent boundary layer on a flat catalytic plate with arbitrary dissociation rate. The method, constructed using the assumptions customary for turbulent boundary layer theory, is a successive approximation method. Good convergence of the method is assured by the fact that the effect of the nonequilibrium nature of the dissociation process on the parameter distribution in the boundary layer and, consequently, on the friction and heat transfer may be allowed for merely by finding corrections, usually relatively small, to the distribution of these parameters in the equilibrium or frozen flows. The basis of the study is the two-layer scheme of the turbulent boundary layer. The Prandtl and Schmidt numbers and also their turbulent analogs are taken equal to unity. As the model of the dissociating gas we use the Lighthill model of the ideal dissociating gas [10], extended by Freeman [11] to nonequilibrium flows.  相似文献   

20.
Characteristics of unsteady type IV shock/shock interaction   总被引:1,自引:0,他引:1  
Characteristics of the unsteady type IV shock/shock interaction of hypersonic blunt body flows are investigated by solving the Navier–Stokes equations with high-order numerical methods. The intrinsic relations of flow structures to shear, compression, and heating processes are studied and the physical mechanisms of the unsteady flow evolution are revealed. It is found that the instantaneous surface-heating peak is caused by the fluid in the “hot spot” generated by an oscillating and deforming jet bow shock (JBS) just ahead of the body surface. The features of local shock/boundary layer interaction and vortex/boundary layer interaction are clarified. Based on the analysis of flow evolution, it is identified that the upstream-propagating compression waves are associated with the interaction of the JBS and the shear layers formed by a supersonic impinging jet, and then the interaction of the freestream bow shocks and the compression waves results in entropy and vortical waves propagating to the body surface. Further, the feedback mechanism of the inherent unsteadiness of the flow field is revealed to be related to the impinging jet. A feedback model is proposed to reliably predict the dominant frequency of flow evolution. The results obtained in this study provide physical insight into the understanding of the mechanisms relevant to this complex flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号