首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple and controlled method for fabricating nanometer-spaced electrodes is presented. This method uses electron-beam lithography followed by double-angle evaporation of thin metallic films. By simply changing the film thickness, one can adjust the separation of the electrodes. In this method, error is caused mainly by the granularity of the deposited metals. We have observed the Coulomb blockade effect of 20 nm Au colloidal particles captured in a gap fabricated using this method.  相似文献   

2.
We measured a break conductance, the last conductance of a contact before its complete break, for Al nanocontacts of 0–200G0 (G0≡2e2/h is the quantum unit of conductance) in ultrahigh vacuum at room temperature. We found that the distribution of the break conductance shows a broad single peak, the position of which shifts with the contact current. From the observed current dependence of the break conductance peak, it is suggested that Al nanocontacts break up most likely when the contact current density reaches a critical value 5×1010 A/cm2.  相似文献   

3.
Ni nanocontacts have been grown by electrodeposition using a self-terminating technique in a single electrolyte bath based on nickel sulfate, nickel chloride and boric acid. Resistance measurements performed on different samples presented two kinds of obviously different magnetoresistance effects. The analysis of the data sets showed that magnetostriction might play a key role in magnetoresistance of the electrodeposited Ni nanocontacts.  相似文献   

4.
One-dimensional (1D) cadmium sulphide (CdS) nanostructures, including micro/nanorods, and nanostructures resembling flowers and cactus have been synthesized by electrochemical template deposition technique, using polycarbonate membranes, by controlling various reaction parameters. These 1D CdS nanostructures were characterized structurally through the X-ray diffraction (XRD) studies and morphologically through scanning electron microscopy (SEM). It was found that apart from the dimensions of the pores of the templates, the geometrical morphologies of the CdS 1D nanostructures were significantly influenced by the synthesizing parameters also. The optical characterization has been done by UV–visible absorption and room-temperature photoluminescence (PL) studies.  相似文献   

5.
One-dimensional (1D) cadmium sulphide (CdS) nanostructures, including micro/nanorods, and nanostructures resembling flowers and cactus have been synthesized by electrochemical template deposition technique, using polycarbonate membranes, by controlling various reaction parameters. These 1D CdS nanostructures were characterized structurally through the X-ray diffraction (XRD) studies and morphologically through scanning electron microscopy (SEM). It was found that apart from the dimensions of the pores of the templates, the geometrical morphologies of the CdS 1D nanostructures were significantly influenced by the synthesizing parameters also. The optical characterization has been done by UV–visible absorption and room-temperature photoluminescence (PL) studies.  相似文献   

6.
The quantized conductance of nanocontacts with atomic sizes is calculated with allowance made for the conduction-electron spin flip in terms of the quantum scattering theory. The exact solution of the Schrödinger equation describing the electron motion in a piecewise-smooth potential is used as the zeroth-order approximation of the perturbation theory. The probabilities of electron transmission (reflection) through a magnetic domain wall, as well as the spin-conserving and spin-flip conductances of the nanocontact, are calculated. It is demonstrated that the spin-flip conductance imposes the natural limitation on the formally infinite increase in the ballistic magnetoresistance of the nanocontact when its cross-sectional area tends to zero.  相似文献   

7.
A compact conductive polythiophene (PT) film junction was prepared by potential controlled electrochemical doping after electropolymerization of thiophene. The polythiophene film was cation-doped on one side, while its other side was anion-doped, which resulted in a polythiophene p-n junction film diode. The free-standing polythiophene film junction diode was flexible and was 1.5 times stronger than aluminum metal. After treatment by a strong electric field, the polythiophene p-n junction exhibits a novel electric property like an intelligent electric switch.  相似文献   

8.
The fabrication and characterization of ZnO UV detector   总被引:9,自引:0,他引:9  
ZnO films were deposited on GaAs substrates by radio frequency (rf) magnetron sputtering followed by an ambient-controlled heat treatment process for arsenic doping. In Hall measurements, the As-doped ZnO films showed the characteristics of p-type semiconductor. The ZnO thin film p–n homojuctions were then fabricated to investigate the electrical properties of the films. The p–n homojunctions exhibited the distinct rectifying current–voltage (IV) characteristics. The turn-on voltage was measured to be 3.0 V under the forward bias. When ultraviolet (UV) light (λ = 325 nm) was irradiated on the p–n homojunction, photocurrent of 2 mA was detected. Based on these results, it is proposed that the p–n homojunction herein is a potential candidate for UV photodetector and optical devices.  相似文献   

9.
柳延辉 《物理学报》2017,66(17):176106-176106
非晶合金是一种不同于传统合金材料的新型合金,其突出的机械、物理、化学等性能在工程应用领域备受关注.作为一种具有无序原子结构的新型合金,非晶合金中蕴含的丰富的物理现象在基础研究领域也备受瞩目.非晶合金往往由多个组元构成,这给成分优化和性能调制带来了巨大的挑战.材料基因组方法是最近发展起来的新方法,通过高通量制备和结构表征以及性能筛选有望加快新型非晶合金材料的探索,在高通量表征中获得的大量实验数据可以帮助人们理解非晶合金中的科学问题.本文主要介绍高通量制备和表征在非晶合金中的应用,通过列举典型案例,展示通过高通量方法探索新型非晶合金材料的作用.  相似文献   

10.
We present a theoretical study of the length dependence of both conductance and thermopower of organometallic vanadium-benzene molecules (V nBzn+1) sandwiched between magnetic Co(100) electrodes. We show that the molecules with n≥3 are efficient spin filters. Namely, we find that the zero bias conductance of the majority electrons is small and decays exponentially with increasing length of the molecule and is in the tunneling regime while the minority electrons show metallic conductance. We show furthermore that the thermopower strongly depends on the length of the molecules and can even change sign as a function of length and temperature.  相似文献   

11.
Arrayed alumina nanowires having controlled uniform diameters of 30–90 nm and lengths of 2–10 μm have been fabricated electrochemically with a high yield using two-step anodized aluminum oxide membranes as templates. The observed photoluminescence of the arrayed alumina nanowires arising from the emission of F+ and F centers is strong and blue-shifted compared with that of porous alumina membranes due to the structural difference of Al2O3. Our synthesized alumina nanowires are also found to be chemically more stable than the templates.  相似文献   

12.
Redox stability of cubic nanostructured zirconia ceramics, free of any secondary phases, has been investigated experimentally as a function of grain size. Pure 8 mol% Y2O3-doped ZrO2 powders were synthesized by a spray pyrolysis process and then compacted by uniaxial pressing, followed by cold isostatic pressing. Using appropriate thermal treatments, average grain sizes ranging from 25 to 242 nm and relative densities from 71% up to 98% were obtained. An electrochemical characterization was performed with comparison on ceramics of 3.2 and 7.6 μm and 98% of theoretical density starting from commercial YSZ powder.  相似文献   

13.
Design,fabrication and characterization of the X-ray supermirrors   总被引:1,自引:0,他引:1  
With the development of the multiplayer technology, the multilayer mirrors have been widely used in many fields, such as the soft X-ray astronomical telescope, soft X-ray microscopy, extreme ultraviolet lithography, applications of synchrotron radiation, plasma diagnosis, and so on. However, in the hard X-ray region, especially for the wavelength shorter than 0.1 nm, the optical elements based on the traditional multilayers or the single high-Z metal coatings cannot accommodate the advancemen…  相似文献   

14.
We demonstrate bulk synthesis of highly crystalline Cd-doped ZnO nanocantilever arrays (CZNAs) using Cd and Zn powders at 600 degrees C, which is characterized via scanning electron microscopy, powder X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy, selected area electron diffraction, and high resolution TEM. The results show that the as-prepared CZNAs have diameters of about 15-50 nm, and lengths up to 400 nm and the corresponding process of growth is suggested for conventional vapor solid mechanism.  相似文献   

15.
A method of fabricating colloidal crystal microstructured fiber is presented. The proposed structure relies on partial etching of the cladding layer of a single-mode fiber and growth of colloidal photonic crystals inside eroded area. The photonic crystal cylindrical annulus embedded in fiber is characterized by optical and scanning electron microscopy. The optical characterization was analyzed by optical transmission spectroscopy. The measurement results show a about 1550-nm band gap. The results also reveal the possibility of cladding cylindrical fibers with three-dimensional photonic crystals.  相似文献   

16.
The fabrication of 4H-SiC vertical trench-gate metal-oxide-semiconductor field-effect transistors(UMOSFETs) is reported in this paper.The device has a 15-μm thick drift layer with 3×1015 cm-3 N-type doping concentration and a 3.1μm channel length.The measured on-state source-drain current density is 65.4 A/cm2 at Vg = 40 V and VDS = 15 V.The measured threshold voltage(Vth) is 5.5 V by linear extrapolation from the transfer characteristics.A specific on-resistance(Rsp-on) is 181 mΩ·cm2 at Vg = 40 V and a blocking voltage(BV) is 880 V(IDS = 100 μA@880V) at Vg = 0 V.  相似文献   

17.
Thin films of polyaniline (PANI) titanium dioxide (TiO2) nanocomposites prepared with and without surfactant (tetradecyltrimethylammonium bromide, TTAB) were formed by spin coating onto chemically cleaned p-type silicon substrates. The current–voltage characteristics of the Au/PANI TiO 2/p-Si/Al and Au/PANI TiO 2 TTAB/p-Si/Al heterojunctions had rectifying behavior with the potential barrier formed between the polymeric thin films and p-Si semiconductor, and they were analyzed on the basis of the standard thermionic emission (TE) theory. Cheung functions combined with conventional forward IV characteristics were used to obtain diode parameters such as barrier height, ideality factor and series resistance (R s ). The values of barrier height, ideality factor and R s were found as 0.496±0.003 eV, 2.313±0.067 and 23.633±7.554 Ω for the Au/PANI TiO 2/p-Si/Al device; 0.494±0.003 eV, 2.167±0.018 and 12.929±2.217 Ω for the Au/PANI TiO 2 TTAB/p-Si/Al device. In addition, the energy distributions of the interface state density of the devices were determined from the forward IV characteristics by taking into account the bias dependence of the ideality factor and barrier height. It was seen that the PANI TiO 2 TTAB/p-Si device had slightly higher interface state density values than those of the PANI TiO 2/p-Si device.  相似文献   

18.
赵晖  骆伟  郑海洋  杨晋玲  杨富华 《中国物理 B》2012,21(10):100702-100702
In this paper we present a novel method to fabricate reliable micro-electro-mechanical system(MEMS) disk resonators with high yield and good performance.The key breakthrough in the fabrication process is a novel approach to effectively restraining electro-chemical corrosion of polycrystalline silicon(polysilicon) electrically coupled with noble metals of MEMS devices by hydrofluoric acid(HF)-based solutions.In addition,a measurement architecture based on a differential readout topology is demonstrated.The differential circuit proposed here can effectively suppress noise and feed-through current by common-mode rejection of the differential amplifier.This differential amplifier circuit configuration is also used to build up a notch filter.The preliminary result about the temperature dependence of the resonance frequency is discussed,and the device failure is analysed.  相似文献   

19.
High throughput experimental methods are known to accelerate the rate of research, development, and deployment of electronic materials. For example, thin films with lateral gradients in composition, thickness, or other parameters have been used alongside spatially-resolved characterization to assess how various physical factors affect the material properties under varying measurement conditions. Similarly, multi-layer electronic devices that contain such graded thin films as one or more of their layers can also be characterized spatially in order to optimize the performance. In this work, we apply these high throughput experimental methods to thin film transistors(TFTs), demonstrating combinatorial channel layer growth, device fabrication, and semi-automated characterization using sputtered oxide TFTs as a case study. We show that both extrinsic and intrinsic types of device gradients can be generated in a TFT library, such as channel thickness and length, channel cation compositions, and oxygen atmosphere during deposition. We also present a semi-automated method to measure the 44 devices fabricated on a 50 mm×50 mm substrate that can help to identify properly functioning TFTs in the library and finish the measurement in a short time. Finally, we propose a fully automated characterization system for similar TFT libraries, which can be coupled with high throughput data analysis. These results demonstrate that high throughput methods can accelerate the investigation of TFTs and other electronic devices.  相似文献   

20.
The wafer-level aperiodic nanostructures were fabricated atop the sapphire substrates in order to increase the transmittance over broadband spectra. The fabrication was presented along with characterization of their optical properties. The nanostructures were patterned using natural lithography with nickel silicide as a hard mask, and the subsequent etching was performed using inductively coupled plasma dry-etching method. The sapphire substrates with nanostructures compared to conventional sapphire substrates, which exhibit antireflective characteristics over broadband spectra at a wide range of incident angles. The nanostructures reduce the reflection down to 5% in the visible spectrum for normal incidence. The transmittance of visible to near-IR spectra was found to be 94% at normal incidence and over 90% at an incident angle of 45°. In the mid-IR spectrum, the transmittance exceeds 88% until the reflection is no longer suppressed by nanostructures. The polarization properties have also been investigated. The nanostructures can enhance the reflectivity ratio 90% for wavelengths shorter than 400 nm. As the amplitude ratio, enhanced from 50% to 80% over the whole visible spectrum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号