首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two compounds containing a porphyrin dimer and a perylene tetracarboxylic diimide (PDI) linked by phenyl ( 1 ) or ethylene groups ( 2 ) are prepared. The photophysical properties of these two compounds are investigated by steady state electronic absorption and fluorescence spectra and lifetime measurements. The ground state absorption spectra reveal intense interactions between the porphyrin units within the porphyrin dimer, but no interactions between the porphyirn dimer and PDI. The fluorescence spectra suggest efficient energy transfer from PDI to porphyrin accompanied by less efficient electron transfer from porphyrin to PDI. The energy transfer is not affected by the dimeric structure of porphyrin or the linkage between the porphyrin dimer and PDI. However, the electron transfer from porphyrin to PDI is significantly affected by either the linkage between the donor and the acceptor or the polarity of the solvents. The dimeric structure of the porphyrin units in these compounds significantly promotes electron transfer in nonpolar, but not in polar solvents.  相似文献   

2.
A new side-to-face supramolecular array of chromophores, where a pyridyl-substituted perylene bisimide dye axially binds to two ruthenium porphyrin fragments, has been prepared by self-assembly. The array is formulated as DPyPBI[Ru(TPP)(CO)](2), where DPyPBI = N,N'-di(4-pyridyl)-1,6,7,12-tetra(4-tert-butylphenoxy)perylene-3,4:9,10-tetracarboxylic acid bisimide and TPP = 5,10,15,20-tetraphenylporphyrin. The photophysical behavior of DPyPBI[Ru(TPP)(CO)](2) has been studied by fast (nanoseconds) and ultrafast (femtoseconds) time-resolved techniques. The observed behavior sharply changes with excitation wavelength, depending on whether the DPyPBI or Ru(TPP)(CO) units are excited. After DPyPBI excitation, the strong fluorescence typical of this unit is completely quenched, and time-resolved spectroscopy reveals the occurrence of photoinduced electron transfer from the ruthenium porphyrin to the perylene bisimide dye (tau = 5.6 ps) followed by charge recombination (tau = 270 ps). Upon excitation of the Ru(TPP)(CO) fragments, on the other hand, ultrafast (tau < 1 ps) intersystem crossing is followed by triplet energy transfer from the ruthenium porphyrin to the perylene bisimide dye (tau = 720 ps). The perylene-based triplet state decays to the ground state on a longer time scale (tau = 9.8 micros). The photophysics of this supramolecular array provides remarkable examples of (i) wavelength-dependent behavior (a small change in excitation wavelength causes a sharp switch from electron to energy transfer) and (ii) intramolecular sensitization (the triplet state of the perylene bisimide, inaccessible in the free dye, is efficiently populated in the array).  相似文献   

3.
We present the synthesis and characterization of new light-harvesting arrays containing two, four, or eight perylene-monoimide accessory pigments attached to a zinc porphyrin. Each perylene is substituted with one or three 4-tert-butylphenoxy substituents. A 4,3'- or 4,2'-diarylethyne linker joins the perylene N-imide position and the porphyrin meso-position, affording divergent or convergent architectures, respectively. The architectures are designed to provide high solubility in organic media and facile perylene-to-porphyrin energy transfer, while avoiding charge-transfer quenching of the excited porphyrin product. For the array containing four perylenes per porphyrin in both nonpolar (toluene) and polar (benzonitrile) media and for the array containing eight perylenes per porphyrin in toluene, the photoexcited perylene-monoimide dye (PMI) decays rapidly ( approximately 3.5 ps) and predominantly (>or=90%) by energy transfer to the zinc porphyrin to form the excited zinc porphyrin (Zn), which has excited-state characteristics (lifetime, fluorescence yield) comparable (within approximately 10%) to those of the isolated chromophore. For the array containing eight perylenes in benzonitrile, PMI decays approximately 80% by energy transfer (forming Zn) and approximately 20% by hole transfer (forming PMI- Zn+); Zn subsequently decays approximately 20% by electron transfer (also forming PMI- Zn+) and approximately 80% by the normal routes open to the porphyrin monomer (intersystem crossing, internal conversion, fluorescence). In addition to rapid and efficient perylene-to-porphyrin energy transfer, the broad blue-green to yellow absorption of the perylene dyes complements the blue absorption of the porphyrin, resulting in excellent light harvesting across a significant spectral region. Collectively, the work described herein identifies multiperylene-porphyrin arrays that exhibit suitable photochemical properties for use as motifs in larger light-harvesting systems.  相似文献   

4.
The photophysics of two symmetric triads, (ZnP)2PBI and (H2P)2PBI, made of two zinc or free-base porphyrins covalently attached to a central perylene bisimide unit has been investigated in dichloromethane and in toluene. The solvent has been shown to affect not only quantitatively but also qualitatively the photophysical behavior. A variety of intercomponent processes (singlet energy transfer, triplet energy transfer, photoinduced charge separation, and recombination) have been time-resolved using a combination of emission spectroscopy and femtosecond and nanosecond time-resolved absorption techniques yielding a very detailed picture of the photophysics of these systems. The singlet excited state of the lowest energy chromophore (perylene bisimide in the case of (ZnP)2PBI, porphyrin in the case of (H2P)2PBI) is always quantitatively populated, besides by direct light absorption, by ultrafast singlet energy transfer (few picosecond time constant) from the higher energy chromophore. In dichloromethane, the lowest excited singlet state is efficiently quenched by electron transfer leading to a charge-separated state where the porphyrin is oxidized and the perylene bisimide is reduced. The systems then go back to the ground state by charge recombination. The four charge separation and recombination processes observed for (ZnP)2PBI and (H2P)2PBI in dichloromethane take place in the sub-nanosecond time scale. They obey standard free-energy correlations with charge separation lying in the normal regime and charge recombination in the Marcus inverted region. In less polar solvents, such as toluene, the energy of the charge-separated states is substantially lifted leading to sharp changes in photophysical mechanism. With (ZnP)2PBI, the electron-transfer quenching is still fast, but charge recombination takes place now in the nanosecond time scale and to triplet state products rather than to the ground state. Triplet-triplet energy transfer from the porphyrin to the perylene bisimide is also involved in the subsequent deactivation of the triplet manifold to the ground state. With (H2P)2PBI, on the other hand, the driving force for charge separation is too small for electron-transfer quenching, and the deactivation of the porphyrin excited singlet takes place via intersystem crossing to the triplet followed by triplet energy transfer to the perylene bisimide and final decay to the ground state.  相似文献   

5.
WANG  Chengyun  TANG  Wei  ZHONG  Hanbin  ZHANG  Xuechao  SHEN  Yongjia 《中国化学》2009,27(10):2020-2024
Novel porphyrin‐perylene diimide dyad (TPP‐PDI) and porphyrin‐perylene diimide‐porphyrin triad (TPP‐PDI‐TPP) were synthesized and characterized. Their structure and properties were studied by UV, FL, 1H NMR, MS, elemental analysis, etc. The variation of fluorescence feature and UV spectra of TPP‐PDI‐TPP triad were investigated at different concentration of CF3COOH in THF. The incorporation of CF3COOH leads to the closure of the efficient charge transfer decay. After protonation of porphyrin units, the fluorescence intensity of TPP‐PDI‐TPP triad increased greatly. The fluorescence intensity of TPP‐PDI‐TPP triad restored after addition of triethylamine into the solution. Thus, TPP‐PDI‐TPP triad was a proton‐type fluorescence switch based on acid‐base control. Moreover, different from porphyrin‐perylene type molecular switches reported before, this TPP‐PDI‐TPP triad has wonderful solubility in organic solvents.  相似文献   

6.
Fusion of two N‐annulated perylene (NP) units with a fused porphyrin dimer along the S0–S1 electronic transition moment axis has resulted in new near‐infrared (NIR) dyes 1 a / 1 b with very intense absorption (ε>1.3×105 M ?1 cm?1) beyond 1250 nm. Both compounds displayed moderate NIR fluorescence with fluorescence quantum yields of 4.4×10?6 and 6.0×10?6 for 1 a and 1 b , respectively. The NP‐substituted porphyrin dimers 2 a / 2 b have also been obtained by controlled oxidative coupling and cyclodehydrogenation, and they showed superimposed absorptions of the fused porphyrin dimer and the NP chromophore. The excited‐state dynamics of all of these compounds have been studied by femtosecond transient absorption measurements, which revealed porphyrin dimer‐like behaviour. These new chromophores also exhibited good nonlinear optical susceptibility with large two‐photon absorption cross‐sections in the NIR region due to extended π‐conjugation. Time‐dependent density functional theory calculations have been performed to aid our understanding of their electronic structures and absorption spectra.  相似文献   

7.
We have prepared a linear array of chromophores consisting of a perylene input unit, a bis(free base porphyrin) transmission unit, and a free base phthalocyanine output unit for studies in artificial photosynthesis and molecular photonics. The synthesis involved four stages: (1) a rational synthesis of trans-AB2C-porphyrin building blocks each bearing one meso-unsubstituted position, (2) oxidative, meso,meso coupling of the zinc porphyrin monomers to afford a bis(zinc porphyrin) bearing one phthalonitrile group and one iodophenyl group, (3) preparation of a bis(porphyrin)-phthalocyanine array via a mixed cyclization involving the bis(free base porphyrin) and 4-tert-butylphthalonitrile, and (4) Pd-mediated coupling of an ethynylperylene to afford a perylene-bis(porphyrin)-phthalocyanine linear array. The perylene-bis(porphyrin)-phthalocyanine array absorbs strongly across the visible spectrum. Excitation at 490 nm, where the perylene absorbs preferentially, results in fluorescence almost exclusively from the phthalocyanine (phi(f) = 0.78). The excited phthalocyanine forms with time constants of 2 ps (90%) and 13 ps (10%). The observed time constants resemble those of corresponding phenylethyne-linked dyads, including a perylene-porphyrin (< or = 0.5 ps) and a porphyrin-phthalocyanine (1.1 ps (70%) and 8 ps (30%)). The perylene-bis(porphyrin)-phthalocyanine architecture exhibits efficient light-harvesting properties and rapid funneling of energy in a cascade from perylene to bis(porphyrin) to phthalocyanine.  相似文献   

8.
A supramolecular self-assembly has been constructed by perylene-bridged bis(β-cyclodextrin)s with water-soluble porphyrin through hydrophobic interactions, showing strong excitonic coupling interactions between perylene backbones and included porphyrins.  相似文献   

9.
Absorption. fluorescence and laser properties of perylene, benzo(ghi)perylene and coronene are studied experimentally (under the same conditions) and quantum chemically at room (293 K) and at low (77 and 4 K) temperatures and direct comparison is made between the results for each molecule. All the main absorption and fluorescence parameters such as oscillator strength, fe, quantum yield, gamma, decay time, tauf, fluorescence rate constant, kf (Einstein coefficient, A) and intersystem crossing rate constant, kST, are measured or calculated. The systems of singlet and triplet levels for these compounds are simulated and analyzed. Triplet states mixing with the lowest singlet S1 state are determined. The low values of kST found are explained. The possible vibronic coupling in the molecule coronene is discussed. The nature of the three fluorescence bands of coronene observed is interpreted. The change in the arrangement of the singlet and triplet levels of the studied compounds is interpreted quantum-chemically. It is found that at room temperature (293 K), only perylene shows laser action, while all three compounds show good laser oscillation at low temperature (< 100 K). The differences in the laser properties of these compounds are explained by the inversion of the Sp(1La) and Sinfinity(1Lb) levels which occurs in the transition from perylene to benzo(ghi)perylene. Chemical properties of the compounds studied are outlined. Linear and quasi-linear fluorescence spectra of perylene and benzo(ghi)perylene, obtained at 77 and 4 K. can be used in the identification of these compounds.  相似文献   

10.
通过吡啶基与金属锌卟啉的配位作用, 合成了一种新型卟啉-苝酰亚胺超分子配合(TPPZn-BPHPDI), 通过核磁共振氢谱确认了超分子体系的形成. 采用荧光滴定方法测得锌卟啉与苝酰亚胺配位作用的平衡常数为5.32×104 L/mol. 纳秒瞬态荧光光谱和瞬态吸收光谱显示, 超分子体系内存在着从卟啉三线态向苝酰亚胺三线态的能量传递过程, 产生了寿命长达101 μs的苝酰亚胺三线态分子.  相似文献   

11.
Perylene-monoimide dyes with solubilizing aryloxy substituents at the perylene perimeter and a synthetic handle on the N-aryl group are valuable building blocks for incorporation as accessory pigments in porphyrin-based light-harvesting arrays. A family of such dyes has been prepared by reaction of 1,6,9-tris(4-tert-butylphenoxy)perylene-3,4-dicarboxylic anhydride with a set of 4-iodo/ethynyl anilines (with or without 2,6-diisopropyl substituents) in the presence of Zn(OAc)2·2H2O in imidazole/mesitylene at 130°C. The workup procedures throughout the synthesis have been streamlined for scale-up purposes, minimizing chromatography. Two bis(perylene)porphyrin building blocks were prepared in a rational manner and examined in Sonogashira and Glaser polymerizations. The two isopropyl groups on the N-aryl group and the three 4-tert-butylphenoxy groups at the perylene perimeter are essential for high solubility of the bis(perylene)porphyrins and corresponding oligomers in organic solvents.  相似文献   

12.
Li Y  Wang N  Gan H  Liu H  Li H  Li Y  He X  Huang C  Cui S  Wang S  Zhu D 《The Journal of organic chemistry》2005,70(24):9686-9692
[structure: see text] New perylene bisimide dyes bearing 3,5-bis(2-hydroxyphenyl)-1,2,4-triazole receptor units with different spacers have been synthesized and characterized. The fluorescence and electronic properties of these compounds have been studied. MALDI-TOF, UV-vis, and fluorescence titration experiments proved that monotopic perylene bisimide ligands could be assembled into dimmers by Fe(III) coordination. The coordination properties of the ditopic perylene bisimide ligands have also been studied preliminarily. Furthermore, the SEM images indicated that well-defined nanoscale structures could be fabricated by self-assembly due to metal ion coordination and pi-pi stacking interactions of perylene rings with the help of a proper spacer.  相似文献   

13.
The efficiencies of organic solar cells that incorporate light-harvesting arrays of organic pigments were calculated under 1 sun of air mass 1.5 solar irradiation. In one set of calculations, photocurrent efficiencies were evaluated for porphyrin, phthalocyanine, chlorin, bacteriochlorin, and porphyrin-bis(perylene) pigment arrays of different length and packing densities under the assumption that each solar photon absorbed quantitatively yielded one electron in the external circuit. In another more realistic set of calculations, solar conversion efficiencies were evaluated for arrays comprising porphyrins or porphyrin-(perylene)2 units taking into account competitive excited-state relaxation pathways. A system of coupled differential equations for all reactions in the arrays was solved on the basis of previously published rate constants for (1) energy transfer between the perylene and porphyrin pigments, (2) excited-state relaxation of the perylene and porphyrin pigments, and (3) excited-state electron injection into the semiconductor. This formal analysis enables determination of the optimal number of pigments in an array for solar-to-electrical energy conversion. The optimal number of pigments depends on the molar absorption coefficient and the density at which the arrays can be packed on an electrode surface. Taken together, the ability to employ fundamental photophysical, kinetic, and structural parameters of modular molecular architectures in assessments of the efficiency of solar-to-electrical energy conversion should facilitate the design of molecular-based solar cells.  相似文献   

14.
[reaction: see text] A series of bay position difluoro- or tetrafluoro-substituted perylene bisimides have been synthesized by nucleophilic halogen exchange reaction of the corresponding dibromo- and tetrachloro-substituted perylene bisimides, respectively, with potassium fluoride. Compared to the parent unsubstituted perylene bisimides, these compounds display hypsochromically shifted absorption and fluorescence spectra with fluorescence quantum yields up to unity enabling bright yellow emission. Their electrochemical properties and crystal structures of two perylene bisimides are also reported.  相似文献   

15.
A covalent dyad composed of a free‐base porphyrin and a perylene diimide ( 1 ) was synthesised and characterised by NMR, HRMS, UV/Vis and fluorometric methods. UV/Vis spectrophotometric analysis indicated a moderate coupling between the components in the ground state. Fluorescence spectroscopy revealed that the emissive properties of the dyad showed that the quantum yield of emission from the porphyrin Soret band increased dramatically and could not be rationalised by a straightforward photoinduced energy (and/or electron) transfer, but rather a coupling of excited states.  相似文献   

16.
杨新国  张登  唐瑞仁  陈宪宏 《有机化学》2009,29(12):1906-1923
由于卟啉与苝酰亚胺基元之间存在高效的能量转移或电子转移过程, 卟啉-苝酰亚胺分子阵列表现出优良的光电性能, 在有机分子器件、有机太阳能电池和光收集材料等高新技术领域展示出广阔的应用前景. 综述了近十几年来卟啉-苝酰亚胺分子阵列的合成及应用研究进展, 并展望了其发展前景.  相似文献   

17.
A star‐shaped electron acceptor based on porphyrin as a core and perylene bisimide as end groups was constructed for application in non‐fullerene organic solar cells. The new conjugated molecule exhibits aligned energy levels, good electron mobility, and complementary absorption with a donor polymer. These advantages facilitate a high power conversion efficiency of 7.4 % in non‐fullerene solar cells, which represents the highest photovoltaic performance based on porphyrin derivatives as the acceptor.  相似文献   

18.
We investigated the 2PA absorption spectrum of a family of perylene tetracarboxylic derivatives (PTCDs): bis(benzimidazo)perylene (AzoPTCD), bis(benzimidazo)thioperylene (Monothio BZP), n-pentylimidobenzimidazoperylene (PazoPTCD), and bis(n-butylimido)perylene (BuPTCD). These compounds present extremely high two-photon absorption, which makes them attractive for applications in photonics devices. The two-photon absorption cross-section spectra of perylene derivatives obtained via Z-scan technique were fitted by means of a sum-over-states (SOS) model, which described with accuracy the different regions of the 2PA cross-section spectra. Frontier molecular orbital calculations show that all molecules present similar features, indicating that nonlinear optical properties in PTCDs are mainly determined by the central portion of the molecule, with minimal effect from the lateral side groups. In general, our results pointed out that the differences in the 2PA cross-sections among the compounds are mainly due to the nonlinearity resonance enhancement.  相似文献   

19.
A new and general synthesis of porphyrin dimers is described. The synthesis involves the reaction of dibromoalkanes with phenolic porphyrins, such as 5(4-hydroxyphenyl)-10,15,20-tritolylporphyrin, to form σ-bromoalkyl porphyrin ethers. The latter compounds are then reacted with a second phenolic porphyrin to give porphyrin dimers. A mixed metalloporphyrin dimer has been prepared which contains both V(IV) and Cu(II). The compounds have been examined spectroscopically. The free-base porphyrin dimers show a splitting of the intense Soret band. This is interpreted as indicative of weak singlet energy transfer between the covalently linked porphyrins.  相似文献   

20.
A series of perylene tetracarboxylic bisimides, substituted at the N-position with methoxyphenyl groups, have been synthesized together with model compounds and their photophysical properties have been investigated by means of steady-state and time-resolved spectroscopic techniques. The luminescence properties of the examined compounds vary remarkably with the substitution pattern, with emission quantum yields ranging from 1 to 10(-2)-10(-3). The observed quenching of the luminescence is assigned to a photoinduced electron transfer (PET) from the electron-rich methoxybenzene unit to the perylene bisimide moiety. The radical anion of perylene bisimide has been detected by transient-absorption spectroscopy. The results could satisfactorily be explained by taking into consideration the redox potentials of the partners and the electron-releasing ability of each methoxy group in relation to its position with respect to N. Quantum-chemical calculations were also performed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号