首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
聚甲醛/蒙脱土纳米复合材料非等温结晶动力学研究   总被引:3,自引:0,他引:3  
聚甲醛/蒙脱土纳米复合材料非等温结晶动力学研究  相似文献   

2.
聚丙烯/蒙脱土纳米复合材料非等温结晶动力学的研究   总被引:22,自引:0,他引:22  
用熔融插层法制备聚丙烯 蒙脱土纳米复合材料 ,用DSC手段研究了其非等温结晶行为 ,并与聚丙烯进行了对比 .对所得数据分别用修正Avrami方程的Jeziorny法、Ozawa法和Mo法进行处理 .结果表明 ,用Jeziorny法和Mo法处理非等温结晶过程比较理想 ,而用Ozawa法处理则不太适用 .用Jeziorny法求出的参数Zc和n随冷却速率的增加而增加 ,但复合材料的Zc 和n略大于聚丙烯的Zc 和n ,用Mo法求出的参数F(T)随结晶度的增加而略有增加 ,a几乎未变 ,复合材料的F(T)略小于聚丙烯的F(T) ,复合材料的a约为 1.40略大于聚丙烯的a(其值约为 1.0 4) .按Kissinger方法计算出聚丙烯及聚丙烯 蒙脱土纳米复合材料的结晶活化能分别为 189.37kJ mol,15 5 .6 9kJ mol,说明有机蒙脱土的加入 ,降低了聚丙烯的结晶活化能 ,起到了异相成核的作用  相似文献   

3.
Attapulgite (AT)‐reinforced poly(vinyl alcohol) (PVA) nanocomposite films were prepared by solution‐casting technique. The nonisothermal crystallization behaviors of PVA bulk and PVA/AT nanocomposites have been investigated by differential scanning calorimetry (DSC). It has been found that the uniformly dispersed AT nanorods in the matrix have great influence on the glass transition temperature and crystallization behavior of PVA matrix. The Jeziorny method has been employed to analyze the DSC data. The results show that Jeziorny method could describe this system very well. Comparing with the PVA bulk, PVA/AT nanocomposites have higher crystallinity Xt, shorter semicrystallization time t1/2, and higher crystallization rate constant Zc. It can be concluded that AT can be used as an effective nucleating agent and has effects on the growth of crystallites in the crystallization process of PVA matrix. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 534–540, 2006  相似文献   

4.
The nonisothermal crystallization kinetics of poly(propylene) (PP) and poly(propylene)/organic‐montmorillonite (PP/Mont) nanocomposite were investigated by differential scanning calorimetry (DSC) with various cooling rates. The Avrami analysis modified by previous research was used to describe the nonisothermal crystallization process of PP and PP/Mont nanocomposite very well. The values of half‐time and Zc showed that the crystallization rate increased with increasing cooling rates for both PP and PP/Mont nanocomposite, but the crystallization rate of PP/Mont nanocomposite was faster than that of PP at a given cooling rate. The activation energies were estimated by the Kissinger method, and the values were 189.4 and 155.7 kJ/mol for PP and PP/Mont nanocomposite, respectively. PP/Mont nanocomposite could be easily fabricated as original PP, although the addition of organomontmorillonite might accelerate the overall nonisothermal crystallization process. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 408–414, 2002; DOI 10.1002/polb.10101  相似文献   

5.
MELTING CRYSTALLIZATION BEHAVIOR OF NYLON 66   总被引:2,自引:0,他引:2  
Analysis of isothermal and nonisothermal crystallization kinetics of nylon 66 was carried out using differentialscanning calorimetry (DSC). The commonly used Avrami equation and that modified by Jeziorny were used, respectively, tofit the primary stage of isothermal and nonisothermal crystallizations of nylon 66, In the isothermal crystallization process,mechanisms of spherulitic nucleation and growth were discussed. The lateral and folding surface free energies determinedfrom the Lauritzen-Hoffman treatment are σ= 9.77 erg/cm~2 and σ_e= 155.48 erg/cm~2, respectively; and the work of chainfolding is q = 33.14 kJ/mol. The nonisothermal crystallization kinetics of nylon 66 was analyzed by using the Mo methodcombined with the Avrami and Ozawa equations. The average Avrami exponent n was determined to be 3.45, Theactivation energies (ΔE) were determined to be -485.45 kJ/mol and -331.27 kJ/mol, respectively, for the isothermal andnonisothermal crystallization processes by the Arrhenius and the Kissinger methods.  相似文献   

6.
A study on isothermal and nonisothermal crystallization kinetics of odd-odd polyamide 9 11 was carried out by differential scanning calorimetry (DSC). The equilibrium melting temperature of polyamide 9 11 was determined to be 199.1 °C. The Avrami equation was adopted to describe isothermal crystallization of polyamide 9 11. Nonisothermal crystallization was analyzed using both the Avrami relation modified by Jeziorny and the equation suggested by Mo. The isothermal and nonisothermal crystallization activation energies of polyamide 9 11 were determined to be −310.9 and −269.0 kJ/mol using the Arrhenius equation and the Kissinger method, respectively.  相似文献   

7.
用差示量热扫描热分析仪(DSC)测试了不同降温速率下聚2-吡咯烷酮(PPD)样品的温度-热焓曲线,样品黏均分子量为2.2×10~4,熔点为272℃。采用Jeziorny法、Ozawa法和莫志深法分析了PPD的非等温结晶动力学。结果表明,在给定降温速率范围内,Ozawa法不适用于描述PPD的非等温结晶动力学过程,Jeziorny法只适用于描述PPD的主结晶阶段,而莫志深法能很好地描述整个结晶过程。Jeziorny法处理结果表明,PPD主结晶阶段的Avrami指数(n)为1.68~1.78,晶体生长为准二维生长。莫志深法处理结果表明,在单位结晶时间里达到某一相对结晶度所需的降温速率随相对结晶度的增加而增大。用Kissinger方程求得PPD的非等温结晶活化能为-31.9kJ/mol。  相似文献   

8.
根据DSC测得的数值,采用Jeziorny ,Вороховский和由作者实验室提出的一种新方法研究了十二烷基取代聚噻吩(P3DDT) 和十八烷基取代聚噻吩(P3ODT) 的非等温结晶过程,并应用Kissinger 法求取其结晶表观活化能ΔE,探讨了不同烷基取代基团对结晶过程的影响.P3DDT 应用Jeziorny 和Вороховский法描述时在结晶后期均发生偏离现象,而作者提出的新方法描述时则得到较好的线性关系.求得P3DDT 的ΔE 为184-79kJ/mol,P3ODT 的ΔE 为246-93kJ/mol,比较结晶表观活化能数值可知,P3DDT 比P3ODT 更易结晶.  相似文献   

9.
通过dsc 方法对新型聚芳醚酮联苯聚醚醚酮酮(PEEKDK) 的等温及非等温熔融结晶动力学进行了研究,运用Avrami 方程分析了其等温结晶行为,求得了等温结晶活化能,平衡熔点,成核参数,并与其它聚芳醚酮类聚合物进行了比较。同时,对PEEKDK的非等温结晶动力学也进行了研究。  相似文献   

10.
This study describes the morphology and nonisothermal crystallization kinetics of poly(ethylene terephthalate) (PET)/isotactic polypropylene (iPP) in situ micro‐fiber‐reinforced blends (MRB) obtained via slit‐extrusion, hot‐stretching quenching. For comparison purposes, neat PP and PET/PP common blends are also included. Morphological observation indicated that the well‐defined microfibers are in situ generated by the slit‐extrusion, hot‐stretching quenching process. Neat iPP and PET/iPP common blends showed the normal spherulite morphology, whereas the PET/iPP microfibrillar blend had typical transcrystallites at 1 wt % PET concentration. The nonisothermal crystallization kinetics of three samples were investigated with differential scanning calorimetry (DSC). Applying the theories proposed by Jeziorny, Ozawa, and Liu to analyze the crystallization kinetics of neat PP and PET/PP common and microfibrillar blends, agreement was found between our experimental results and Liu's prediction. The increases of crystallization temperature and crystallization rate during the nonisothermal crystallization process indicated that PET in situ microfibers have significant nucleation ability for the crystallization of a PP matrix phase. The crystallization peaks in the DSC curves of the three materials examined widened and shifted to lower temperature when the cooling rate was increased. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 374–385, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号