首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We followed the self-assembly of high-molecular weight MePEG- b -PCL (poly(methyl ethylene glycol)-block-poly(ε-caprolactone)) diblock and MePEG- b -PBO- b -PCL (poly(methyl ethylene glycol)-block-poly(1,2-butylene oxide)-block-poly(ε-caprolactone)) into micelles using molecular dynamics simulation with a coarse grain (CG) force field based on quantum mechanics (CGq FF). The triblock polymer included a short poly(1,2-butylene oxide) (PBO) at the hydrophilic-hydrophobic interface of these systems. Keeping the hydrophilic length fixed (MePEG45), we considered 250 chains in which the hydrophobic length changed from PCL44 or PBO6- b -PCL43 to PCL62 or PBO9- b -PCL61. The polymers were solvated in explicit water for 2 μs of simulations at 310.15 K. We found that the longer diblock system undergoes a morphological transition from an intermediate rod-like micelle to a prolate-sphere, while the micelle formed from the longer triblock system is a stable rod-like micelle. The two shorter diblock and triblock systems show similar self-assembly processes, both resulting in slightly prolate-spheres. The dynamics of the self-assembly is quantified in terms of chain radius of gyration, shape anisotropy, and hydration of the micelle cores. The final micelle structures are analyzed in terms of the local density components. We conclude that the CG model accurately describes the molecular mechanisms of self-assembly and the equilibrium micellar structures of hydrophilic and hydrophobic chains, including the quantity of solvent trapped inside the micellar core.  相似文献   

2.
A combination of turbidity, light scattering, and steady shear viscosity experiments has revealed that aqueous solutions of an amphiphilic diblock copolymer or a negatively charged triblock copolymer, both containing poly(N-isopropylacrylamide), can undergo a temperature-induced transition from loose intermicellar clusters to collapsed core-shell nanostructures. Turbidity, light scattering, and viscosity results of these short-chain copolymers disclose transition peaks at intermediate temperatures. At high temperatures, the compact core-shell particles from the diblock copolymer aggregate, whereas no renewed interpolymer association is observed for the triblock copolymer or for the solution of the diblock copolymer with added sodium dodecyl sulfate because the electrostatic repulsive interactions suppress the tendency of forming interpolymer clusters. The temperature-induced building up of intermicellar structures and the formation of large aggregates at high temperature in the solution of the diblock copolymer is significantly reduced under the influence of high shear rates.  相似文献   

3.
The synthesis and self-assembly behavior of biohybrid ABC triblock copolymers consisting of a synthetic diblock, polystyrene-b-polyethylene glycol (PSm-b-PEG113), where m is varied, and a hemeprotein, myoglobin (Mb) or horse radish peroxidase (HRP), is described. The synthetic diblock copolymer is first functionalized with the heme cofactor and subsequently reconstituted with the apoprotein or the apoenzyme to yield the protein-containing ABC triblock copolymer. The obtained amphiphilic block copolymers self-assemble in aqueous solution into a large variety of aggregate structures. Depending on the protein and the polystyrene block length, micellar rods, vesicles, toroids, figure eight structures, octopus structures, and spheres with a lamellar surface are formed.  相似文献   

4.
Block copolymers are well‐known for their large number of microphase morphologies on mesoscopic length scales. After a short review of the different morphologies observed in binary block copolymers and ternary triblock copolymers, the self‐assembling in blends of different block copolymers into common superlattices is discussed in detail. Besides similar morphologies known for pure triblock and diblock copolymers, the blends can also show new morphologies. Examples of such new morphologies are periodic non‐centrosymmetric lamellae and multiple gyroid interface structures. The discussion of the superlattices is primarily based on investigations by transmission electron microscopy (TEM), which are supplemented in a few cases by small angle X‐ray scattering (SAXS) or results from computer simulations.  相似文献   

5.
The self-assembled morphologies of amphiphilic ABC star triblock copolymers consisting of hydrophilic A blocks and hydrophobic B and C blocks and the blends with their counterpart linear AB diblock copolymers in solution are investigated by 2D real-space implementation of self-consistent field theory (SCFT) simulation. The star triblock copolymers self-assemble in solution to form various micellar structures from hamburger, to segmented wormlike, to toroidal segmented micelles, and finally to vesicles with simultaneously increasing hydrophobic lengths of blocks B and C. When the length of hydrophobic blocks B and C is asymmetric, specific bead-on-string worm micelles are found. Particularly, when the star ABC triblock copolymer is in a strong segregation regime and both B and C blocks are strongly hydrophobic, quite long segmented wormlike micelles are obtained, which had not been found in previously investigated diblock and linear ABC triblock copolymers solution. Additionally, raspberry micelles with beads dispersed on the core also occur in the strong segregation regime of bulk star ABC triblock copolymers. Furthermore, the aggregate morphology of ABC star triblock copolymers is strongly influenced by the addition of linear AB diblock copolymers. The most significant feature is that the long segmented worms will become shorter, to form hamburger micelles with the addition of AB diblock copolymers. These simulations are in good agreement with the experimental findings by Lodge's group.  相似文献   

6.
利用耗散粒子动力学模拟研究了在水溶液中混合不同的线形三嵌段共聚物AxByCz和线形两嵌段共聚物AmBn对多室胶束的形貌多样性的影响.通过改变线形的三嵌段共聚物和两嵌段共聚物的链长来寻找多室胶束的形成条件.由线形三嵌段共聚物和线形两嵌段共聚物的不同混合形成的多室胶束结构是多种多样的,例如"蠕虫状"胶束、"汉堡包"胶束、"球上球"胶束、"核-壳-壳"胶束等等.多室胶束的整体形貌和内部结构的控制都可以从线形三嵌段共聚物和两嵌段共聚物的二元共混得到.为了表征获得的多室胶束结构,我们计算了密度图和成对分布函数图.在此工作中,可以获得和观察到复杂的多室胶束.结果表明,简单地混合线形的三嵌段共聚物和线形的两嵌段共聚物是一个控制多室胶束形貌和结构的有效方法,在工程实验中可以更简单更经济地形成多室胶束结构.因此,在设计新的多室胶束方面,聚合物共混仍然是未来值得更加关注的一个话题.  相似文献   

7.
Well‐defined diblock and triblock copolymers composed of poly(N‐isopropylacrylamide) (PNIPAM) and poly(ethylene oxide) (PEO) were successfully synthesized through the reversible addition–fragmentation chain transfer polymerization of N‐isopropylacrylamide (NIPAM) with PEO capped with one or two dithiobenzoyl groups as a macrotransfer agent. 1H NMR, Fourier transform infrared, and gel permeation chromatography instruments were used to characterize the block copolymers obtained. The results showed that the diblock and triblock copolymers had well‐defined structures and narrow molecular weight distributions (weight‐average molecular weight/number‐average molecular weight < 1.2), and the molecular weight of the PNIPAM block in the diblock and triblock copolymers could be controlled by the initial molar ratio of NIPAM to dithiobenzoate‐terminated PEO and the NIPAM conversion. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4873–4881, 2004  相似文献   

8.
The self-assembly of triblock copolymers of poly(ethylene oxide-b-methyl methacrylate-b-styrene) (PEO-b-PMMA-b-PS), where PS is the major component and PMMA and PEO are minor components, provides a robust route to highly ordered, nanoporous arrays with cylindrical pores of 10-15 nm that show promise in block copolymer lithography. These ABC triblock copolymers were synthesized by controlled living radical polymerization, and after solvent annealing, thin films showing defect-free cylindrical microdomains were obtained. The key to the successful generation of highly regular, porous thin films is the use of PMMA as a photodegradable mid-block which leads to nanoporous structures with an unprecedented degree of lateral order. The power of using a triblock copolymer when compared to a traditional diblock copolymer is evidenced by the ability to exploit and combine the advantages of two separate diblock copolymer systems, the high degree of lateral ordering inherent in PS-b-PEO diblocks plus the facile degradability of PS-b-PMMA diblock copolymer systems, while negating the corresponding disadvantages, poor degradability in PS-b-PEO systems and no long-range order for PS-b-PMMA diblocks.  相似文献   

9.
A supramolecular AB diblock copolymer has been prepared by the sequential self-assembly of terpyridine end-functionalized polymer blocks by using Ru(III)/Ru(II) chemistry. By this synthetic strategy a hydrophobic poly(ferrocenylsilane) (PFS) was attached to a hydrophilic poly(ethylene oxide) (PEO) block to give an amphiphilic metallo-supramolecular diblock copolymer (PEO/PFS block ratio 6:1). This compound was used to form micelles in water that were characterized by a combination of dynamic and static light scattering, transmission electron microscopy, and atomic force microscopy. These complementary techniques showed that the copolymers investigated form rod-like micelles in water; the micelles have a constant diameter but are rather polydisperse in length, and light scattering measurements indicate that they are flexible. Crystallization of the PFS in these micelles was observed by differential scanning calorimetry, and is thought to be the key behind the formation of rod-like structures. The cylindrical micelles can be cleaved into smaller rods whenever the temperature of the solution is increased or they are exposed to ultrasound.  相似文献   

10.
We perform molecular simulations to study the self-assembly of block copolymer tethered cubic nanoparticles. Minimal models of the tethered nanoscale building blocks (NBBs) are utilized to explore the structures arising from self-assembly. We demonstrate that attaching a rigid nanocube to a diblock copolymer affects the typical equilibrium morphologies exhibited by the pure copolymer. Lamellar and cylindrical phases are observed in both systems but not at the corresponding relative copolymer tether block fractions. The effect of nanoparticle geometry on phase behavior is investigated by comparing the self-assembled structures formed by the tethered NBBs with those of their linear ABC triblock copolymer counterparts. The tethered nanocubes exhibit the conventional triblock copolymer lamellar and cylindrical phases when the repulsive interactions between different blocks are symmetric. The rigid and bulky nature of the cube induces interfacial curvature in the tethered NBB phases compared to their linear ABC triblock copolymer counterparts. We compare our results with those structures obtained from ABC diblock copolymer tethered nanospheres to further elucidate the role of cubic nanoparticle geometry on self-assembly.  相似文献   

11.
Self-assembled behavior of symmetric ABA rod-coil-rod triblock copolymer melts is studied by applying self-consistent-field lattice techniques in three-dimensional space. The phase diagram is constructed to understand the effects of the chain architecture on the self-assembled behavior. Four stable structures are observed for the ABA rod-coil-rod triblock, i.e., spherelike, lamellar, gyroidlike, and cylindrical structures. Different from AB rod-coil diblock and BAB coil-rod-coil triblock copolymers, the lamellar structure observed in ABA rod-coil-rod triblock copolymer melts is not stable for high volume fraction of the rod component (f(rod)=0.8), which is attributed to the intramolecular interactions between the two rod blocks of the polymer chain. When 0.3相似文献   

12.
13.
The paper provides new insights into the structure of Pt-containing diblock and triblock copolymers based on poly(ethylene oxide) (PEO) and poly(4-vinylpyridine) (P4VP), using a combination of atomic force microscopy (AFM), X-ray diffraction (XRD), transmission electron microscopy (TEM), and anomalous small-angle X-ray scattering (ASAXS). Parallel studies using methods contributing supplemental structural information allowed us to comprehensively characterize sophisticated polymer systems during metalation and to exclude possible ambiguity of the data interpretation of each of the methods. AFM and TEM make available the determination of sizes of the micelles and of the Pt-containing micelle cores, respectively, while a combination of XRD, TEM, and ASAXS reveals Pt-nanoparticle size distributions and locations along with the structural information about the polymer matrix. In addition, for the first time, ASAXS revealed the organization of Pt-nanoparticle-filled diblock and triblock copolymers in the bulk. The nanoparticle characteristics are mainly determined by the type of block copolymer system in which they are found: larger particles (2.0-3.0 nm) are formed in triblock copolymer micelles, while smaller ones (1.5-2.5 nm) are found in diblock copolymer micelles. This can be explained by facilitated intermicellar exchange in triblock copolymer systems. For both systems, Pt nanoparticles have narrow particle size distributions as a result of a strong interaction between the nanoparticle surface and the P4VP units inside the micelle cores. The pH of the medium mainly influences the particle location rather than the particle size. A structural model of Pt-nanoparticle clustering in the diblock PEO-b-P4VP and triblock P4VP-b-PEO-b-P4VP copolymers in the bulk was constructed ab initio from the ASAXS data. This model reveals that nearly spherical micellar cores of about 10 nm in diameter (filled with Pt nanoparticles) aggregate forming slightly oblate hollow bodies with an outer diameter of about 40 nm.  相似文献   

14.
Well-defined ABC block copolymers consisting of poly(ethylene oxide) monomethylene ether (MPEO) as A block, poly(styrene) (PS) as B block and poly(γ-benzyl-l-glutamate) (PBLG) as C block were synthesized by the combination of atom transfer radical polymerization (ATRP) and click reactions. The bromine-terminated diblock copolymer poly(ethylene oxide) monomethylene ether-block-poly(styrene) (MPEO-PS-Br) was prepared by ATRP of styrene initiated with macro-initiator MPEO-Br, which was prepared from the esterification of MPEO and 2-bromoisobutyryl bromide, and converted into the azido-terminated diblock copolymer MPEO-PS-N3 by simple nucleophilic substitutions in DMF in the presence of sodium azide. Propargyl-terminated PBLGs were synthesized by ring-opening polymerization of γ-benzyl-l-glutamate-N-carboxyanhydride in DMF at room temperature using propargyl amine as an initiator. ABC triblock copolymers MPEO-PS-PBLG with a wide range of number-average molecular weights from 1.55 to 3.75 × 104 and a narrow polydispersity from 1.07 to 1.10 were synthesized via the click reaction of MPEO-PS-N3 and the propargyl-terminated PBLG in the presence of CuBr and 1,1,4,7,7-pentamethyldiethylenetriamine (PMDETA) catalyst system. The structures of these ABC block copolymers and corresponding precursors were characterized by NMR, IR and GPC. The results showed that click reaction was efficient. Therefore, a facile approach was offered to synthesize ABC triblock copolymers composed of crystallizable polymer MPEO, conventional vinylic polymer PS and rod-like α-helix polypeptide PBLG.  相似文献   

15.
We theoretically investigate general conditions under which an inorganic phase can direct the self-assembly of an ordered polymer nanocomposite. For this purpose, we consider a solution of triblock copolymers forming a hexagonal phase of micelles and investigate the effect of adding attractive particles. We show that if the triblock is functionalized at its ends by attaching groups with specific affinity for the particles, thus effectively becoming a pentablock, the particles direct the self-assembly of the system into phases where both the polymers and the particles exhibit mesoscopic order. Different lamellar and gyroid phases (both with Ia3d and I4(1)32 space symmetries) are presented in detail. Our results show that functionalization is a very powerful route for directing self-assembly of polymer nanocomposites. We briefly discuss the connections with recent theoretical and experimental results in diblock melts with nanoparticles as well as for problems where polymers are used to template the growth of an inorganic phase in solution.  相似文献   

16.
The conformational behaviour of styrene-p-chlorostyrene diblock copolymers in dilute solutions was studied and compared with that of the corresponding triblock copolymers. Eight styrene-p-chlorostyrene diblock copolymers, of almost equimolar composition but with different molecular weights, were prepared using an anionic polymerization technique. The intrinsic viscosities of the copolymers were measured in non-selective solvents, such as toluene and 2-butanone, and in a selective solvent, cumene. The osmotic second virial coefficients of the diblock copolymers were measured in toluene. The data were analysed on the basis of two parameter theories. The unperturbed dimensions for the diblock copolymers can be expressed as a composition average of those for the parent homopolymers and the long-range interaction parameters of the diblock copolymers in toluene, 2-butanone and cumene are smaller than those of the triblock copolymers of the same composition. It means that the diblock copolymer chains in these 3 solvents had a more compact conformation than the triblock copolymers of the same composition and molecular weight.  相似文献   

17.
A block copolymer of hydrophilic poly(ethylene oxide) and a hydrophobic poly(alkylene oxide) can associate in dilute aqueous solution to form micelles. The results of recent investigations of the micellisation behaviour and micelle properties of such copolymers are described. Copolymers of ethylene oxide with propylene oxide, 1,2‐butylene oxide or styrene oxide are considered, including aspects of their preparation. Experimental methods for determination of critical conditions for micellisation, micelle association number and spherical‐micelle radius are summarised. Effects of temperature, composition, block length and block architecture (diblock, triblock and cyclic‐diblock) are described and, where possible, related to the predictions of theory. Brief consideration is given to the dynamics of micelle formation/dissociation, to cylindrical micelles, and to effects of added salts.  相似文献   

18.
The thermodynamic‐equilibrium structures of four copolymers with different chain architectures are compared. They are AB diblock, BAB triblock, and ABC triblock copolymers and AB2 star‐branched graft copolymers. Their morphological transitions meaningfully differ from one another, reflecting the difference in chain architecture. Two‐component polymers barely form bicontinuous structures; however, symmetric ABC triblock copolymers easily form tricontinuous structures composed of two surfaces parallel to a Gyroid minimal surface. All four ABC equilibrium structures have a superlattice structure. Block polymer chains in microphase‐separated bulk are elongated in the longitudinal direction in lamellar microphases. Although the deformation manner of the chains restricted in microphases depends on the chain architectures, the volumes of the deformed coils are always the same as those of the unperturbed chains regardless of their architectures. The measured polystyrene/poly(2‐vinylpyridine) interfacial thickness is fairly thin, but the observed value is much thicker than the theoretically predicted one. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1645–1655, 2000  相似文献   

19.
The mechanism by which the unique toroidal supramolecular assemblies were formed for triblock copolymers of acrylic acid (AA), methyl acrylate (MA), and styrene (S), PAA99-b-PMA73-b-PS66, was probed in this study by investigating the influences of the block copolymer compositions and sequences. Two triblock copolymers, PAA99-b-PMA73-b-PS66 and PAA99-b-PS76-b-PMA62, and two diblock copolymers, PAA99-b-PMA155 and PAA99-b-PS133, were studied under experimental solution-state conditions that involved a range of solvent/nonsolvent (tetrahydrofuran/water) compositions, each in the presence of 2,2'-(ethylenedioxy)bis(ethylamine). The resulting morphologies were determined by transmission electron microscopy. The failures to afford toroidal supramolecular assemblies from both diblock copolymers having comparable lengths of the total hydrophobic chain segment, either entirely PMA or entirely PS, and from the triblock copolymer having a reversed connection sequence for the hydrophobic (PMA and PS) segments demonstrate the unique self-assembly behaviors of triblock copolymers and the importance of the block copolymer sequence.  相似文献   

20.
采用软补丁粒子模型及相应的介观动力学模拟方法, 研究了软三嵌段两面神胶体粒子在稀溶液条件下的自组装行为. 通过合理调节补丁大小和补丁之间的吸引强度, 软三嵌段两面神胶体粒子能够自组装形成非常丰富的聚集结构, 包括线状结构、 六方柱状结构、 体心四方束状结构以及三维网络状结构. 此外, 分析了与纤维结构类似的体心四方束状结构形成的动力学机理. 模拟结果为实验上设计并制备新颖的超胶体纳米结构提供一定的理论支持.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号