首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— Administration of the heme precursor 5-aminolevulinic acid (ALA) leads to the selective accumulation of the photosensitizer protoporphyrin IX (PpIX) in certain types of normal and abnormal tissues. This phenomenon has been exploited clinically for detection and treatment of a variety of malignant and nonmalignant lesions. The present preclinical study examined the specificity of ALA-induced porphyrin fluorescence in chemically induced murine lung tumors in vivo. During the early stages of tumorigenesis, ALA-induced PpIX fluorescence developed in hyperplastic tissues in the lung and later in early lung tumor foci. In early tumor foci, maximum PpIX fluorescence occurred 2 h after the administration of ALA and returned to background levels after 4 h. There was approximately a 20-fold difference in PpIX fluorescence intensity between tumor foci and the adjacent normal tissue. The specificity of ALA-induced fluorescence for hyperplastic tissues and benign tumors in lung during tumorigenesis suggests a possible use for this fluorochrome in the detection of premalignant alterations in the lung by fluorescence endoscopy. Two non-small cell lung cancer cell lines developed ALA-induced PpIX fluorescence in vitro . These lines exhibited a light-dose-dependent phototoxic response to ALA photodynamic therapy (PDT) in vitro . Because PpIX is a clinically effective photosensitizer for a wide variety of malignancies, these results support the possible use of ALA-induced PpIX PDT for lung cancer.  相似文献   

2.
Aminolevulinic acid (ALA)‐mediated protoporphyrin IX (PpIX) production is being explored for tumor fluorescence imaging and photodynamic therapy (PDT). As a prodrug, ALA is converted in heme biosynthesis pathway to PpIX with fluorescent and photosensitizing properties. To better understand the role of heme biosynthesis enzymes in ALA‐mediated PpIX fluorescence and PDT efficacy, we used lentiviral shRNA to silence the expression of porphobilinogen synthase (PBGS), porphobilinogen deaminase (PBGD) and ferrochelatase (FECH) in SkBr3 human breast cancer cells. PBGS and PBGD are the first two cytosolic enzymes involved in PpIX biosynthesis, and FECH is the enzyme responsible for converting PpIX to heme. PpIX fluorescence was examined by flow cytometry and confocal fluorescence microscopy. Cytotoxicity was assessed after ALA‐mediated PDT. Silencing PBGS or PBGD significantly reduced ALA‐stimulated PpIX fluorescence, whereas silencing FECH elevated basal and ALA‐stimulated PpIX fluorescence. However, compared with vector control cells, the ratio of ALA‐stimulated fluorescence to basal fluorescence without ALA was significantly reduced in all knockdown cell lines. PBGS or PBGD knockdown cells exhibited significant resistance to ALA‐PDT, while increased sensitivity to ALA‐PDT was found in FECH knockdown cells. These results demonstrate the importance of PBGS, PBGD and FECH in ALA‐mediated PpIX fluorescence and PDT efficacy.  相似文献   

3.
Aminolevulinic acid (ALA) is a prodrug that is metabolized in the heme biosynthesis pathway to produce protoporphyrin IX (PpIX) for tumor fluorescence detection and photodynamic therapy (PDT). The iron chelator deferoxamine (DFO) has been widely used to enhance PpIX accumulation by inhibiting the iron‐dependent bioconversion of PpIX to heme, a reaction catalyzed by ferrochelatase (FECH). Tumor response to DFO treatment is known to be highly variable, and some tumors even show no response. Given the fact that tumors often exhibit reduced FECH expression/enzymatic activity, we examined how reducing FECH level affected the DFO enhancement effect. Our results showed that reducing FECH level by silencing FECH in SkBr3 breast cancer cells completely abrogated the enhancement effect of DFO. Although DFO enhanced ALA‐PpIX fluorescence and PDT response in SkBr3 vector control cells, it caused a similar increase in MCF10A breast epithelial cells, resulting in no net gain in the selectivity toward tumor cells. We also found that DFO treatment induced less increase in ALA‐PpIX fluorescence in tumor cells with lower FECH activity (MDA‐MB‐231, Hs 578T) than in tumor cells with higher FECH activity (MDA‐MB‐453). Our study demonstrates that FECH activity is an important determinant of tumor response to DFO treatment.  相似文献   

4.
The tissue photosensitizer protoporphyrin IX (PpIX) is an immediate precursor of heme in the biosynthetic pathway for heme. In certain types of cells and tissues, the rate of synthesis of PpIX is determined by the rate of synthesis of 5-aminolevulinic acid (ALA), which in turn is regulated via a feedback control mechanism governed by the concentration of free heme. The presence of exogenous ALA bypasses the feedback control, and thus may induce the intracellular accumulation of photosensitizing concentrations of PpIX. However, this occurs only in certain types of cells and tissues. The resulting tissue-specific photosensitization provides a basis for using ALA-induced PpIX for photodynamic therapy. The topical application of ALA to certain malignant and non-malignant lesions of the skin can induce a clinically useful degree of lesion-specific photosensitization. Superficial basal cell carcinomas showed a complete response rate of approximately 79% following a single exposure to light. Recent preclinical studies in experimental animals and human volunteers indicate that ALA can induce a localized tissue-specific photosensitization if administered by intradermal injection. A generalized but still quite tissue-specific photosensitization may be induced if ALA is administered by either subcutaneous or intraperitoneal injection or by mouth. This opens the possibility of using ALA-induced PpIX to treat tumors that are too thick or that lie too deep to be accessible to either topical or locally injected ALA.  相似文献   

5.
As a tumor photodiagnostic agent, 5-aminolevulinic acid (ALA) is metabolized in the heme biosynthesis pathway to produce protoporphyrin IX (PpIX) with fluorescence. ALA-PpIX fluorescence was evaluated in human renal cell carcinoma (RCC) cell lines and non-tumor HK-2 cell lines. We found that extracellular PpIX level was correlated with ABCG2 activity, illustrating its importance as a PpIX efflux transporter. Extracellular PpIX was also related to the Km of ferrochelatase (FECH) that chelates PpIX with ferrous iron to form heme. The Vmax of FECH was higher in all RCC cell lines tested than in the HK-2 cell line. TCGA dataset analysis indicates a positive correlation between FECH expression and RCC patient survival. These findings suggest FECH as an important biomarker in RCC. Effects of iron chelator deferoxamine (DFO) on the enhancement of PpIX fluorescence were assessed. DFO increased intracellular PpIX in both tumor and non-tumor cells, resulting in no gain in tumor/non-tumor fluorescence ratios. DFO appeared to increase ALA-PpIX more at 1-h than at 4-h treatment. There was an inverse correlation between ALA-PpIX fluorescence and the enhancement effect of DFO. These results suggest that enhancement of ALA-PpIX by DFO may be limited by the availability of ferrous iron in mitochondria following ALA administration.  相似文献   

6.
Photodynamic therapy with 5-aminolevulinic acid (ALA) is based on metabolism of ALA to a photosensitizing agent, protoporphyrin IX (PpIX), in tumor cells. Photosensitivity of target cells may be influenced by mitochondrial iron levels because ferrochelatase-catalyzed insertion of Fe2+ into PpIX converts it to heme, a nonsensitizer. To investigate this prospect, we exposed L1210 cells (approximately 10(6)/mL in 1% serum-containing medium) to a lipophilic iron chelate, ferric-8-hydroxyquinoline (Fe[HQ]2, 0.5 microM), prior to treating with ALA (0.2 mM, 4 h) and irradiating with broadband visible light. When Fe(HQ)2 was added to cells immediately or 1 h before ALA, the initial rate of photokilling, as measured by thiazolyl blue (mitochondrial dehydrogenase) assay, was markedly less than that of non-iron controls. The HPLC analysis of cell extracts indicated that ALA-induced PpIX was at least 50% lower after this Fe(HQ)2 treatment, presumably explaining the drop in photolethality. By contrast, cells treated with ALA and light 20 h after being exposed to Fe(HQ)2 contained the same amount of PpIX as non-iron controls and were photoinactivated at nearly the same rate. The 20 h delayed cells contained approximately 12 times more immunodetectable ferritin heavy subunit than controls or 1 h counterparts, which could account for the disappearance of iron's antisensitization effects in the former. Consistent with this idea, the short-term effects of Fe(HQ)2 on ALA-induced sensitization were found to be blunted significantly in ferritin-enriched cells. The Fe(HQ)2 produced strikingly different results when cells were sensitized with exogenous PpIX, stimulating photokilling after short-term contact but inhibiting it after long-term contact while having no significant effect on the level of cell-associated PpIX in either case. Thus, iron can have diverse effects on PpIX-mediated photokilling, depending on contact time with cells and whether the porphyrin is metabolically derived or applied as such.  相似文献   

7.
Photodynamic therapy (PDT), in which 5‐ALA (a precursor for protoporphyrin IX, PpIX) is administered prior to exposure to light, is a nonscarring treatment for skin cancers. However, for deep tumors, ALA‐PDT is not always effective due to inadequate production of PpIX. We previously developed and reported a combination approach in which the active form of vitamin D3 (calcitriol) is given systemically prior to PDT to improve PpIX accumulation and to enhance PDT‐induced tumor cell death; calcitriol, however, poses a risk of hypercalcemia. Here, we tested a possible strategy to circumvent the problem of hypercalcemia by substituting natural dietary vitamin D3 (cholecalciferol; D3) for calcitriol. Oral D3 supplementation (10 days of a 10‐fold elevated D3 diet) enhanced PpIX levels 3‐ to 4‐fold, and PDT‐mediated cell death 20‐fold, in subcutaneous A431 tumors. PpIX levels and cell viability in normal tissues were not affected. Hydroxylated metabolic forms of D3 were only modestly elevated in serum, indicating minimal hypercalcemic risk. These results show that brief oral administration of cholecalciferol can serve as a safe neoadjuvant to ALA‐PDT. We suggest a clinical study, using oral vitamin D3 prior to PDT, should be considered to evaluate this promising new approach to treating human skin cancer.  相似文献   

8.
Photodynamic therapy (PDT) has been considered as a potential therapy for superficial bladder carcinomas. Cutaneous photosensitivity and reduction of bladder capacity are the two well-known complications following systemic administration of the commonly used photosensitizer, Photofrin II® (PII). The objective of the present study was to evaluate whether intravesical. (i.b.) instillation of photosensitizers for PDT of bladder cancer might be a more suitable treatment method. Female Fischer rats were utilized to develop orthotopic and heterotopic bladder tumor models. Rats bearing orthotopic bladder tumors were treated either intravesically or intravenously with graded doses of 5-aminolevulinic acid (ALA) or PII. Normal rats received the same doses of ALA or PII. As well, rats bearing heterotopic tumor were studied for comparison. The biodistribution times (times allowed for tissue uptake and bioconversion following drug administration) were 2, 4 or 6 h. Porphyrin fluorescence intensities within tumor, urothelium, submucosa, bladder muscularis and abdominal muscle were quantitated by confocal laser scanning microscopy. Following intravenous (i.v.) injection of ALA, tumor protoporphyrin IX (PpIX) levels peaked at 4 h and diminished by 6 h. The PpIX ratios of tumor-to-bladder mucosa, submucosa and muscle layers were 3:1, 5:1 and 8:1, respectively, 4 h following 1000 mg/kg ALA injection. After ALA instillation, the optimal biodistribution time appeared to be 4 h. Bladder instillation provided comparable tumor labeling with the i.v. route, but lost selectivity of PpIX accumulation between tumor and normal urothelium. The PpIX ratio of tumor-to-bladder muscularis was 5:1. After i.b. instillation of PII, porphyrin fluorescence was detected only within tumor and urothelium, while porphyrin fluorescence was mainly located in bladder submucosa following i.v. injection. Intravesical administration of ALA or PII might be feasible for PDT of superficial bladder cancers.  相似文献   

9.
Topical or systemic administration of 5‐aminolevulinic acid (ALA) and its esters results in increased production and accumulation of protoporphyrin IX (PpIX) in cancerous lesions allowing effective application of photodynamic therapy (PDT). The large concentrations of exogenous ALA practically required to bypass the negative feedback control exerted by heme on enzymatic ALA synthesis and the strong dimerization propensity of ALA are shortcomings of the otherwise attractive PpIX biosynthesis. To circumvent these limitations and possibly enhance the phototoxicity of PpIX by adjuvant chemotherapy, covalent bonding of PpIX with a drug carrier, β‐cyclodextrin (βCD) was implemented. The resulting PpIX + βCD product had both carboxylic termini of PpIX connected to the CD. PpIX + βCD was water soluble, was found to preferentially localize in mitochondria rather than in lysosomes both in MCF7 and DU145 cell lines while its phototoxiciy was comparable to that of PpIX. Moreover, PpIX + βCD effectively solubilized the breast cancer drug tamoxifen metabolite N‐desmethyltamoxifen (NDMTAM) in water. The PpIX + βCD/NDMTAM complex was readily internalized by both cell lines employed. Furthermore, the multimodal action of PpIX + βCD was demonstrated in MCF7 cells: while it retains the phototoxic profile of PpIX and its fluorescence for imaging purposes, PpIX + βCD can efficiently transport tamoxifen citrate intracellularly and confer cell death through a synergy of photo‐ and chemotoxicity.  相似文献   

10.
Protoporphyrin IX (PpIX) is used as a fluorescence marker and photosensitizing agent in photodynamic therapy (PDT). A temporary increase of PpIX in tissues can be obtained by administration of 5-aminolevulinic acid (ALA). Lipophilicity is one of the key parameters defining the bioavailability of a topically applied drug. In the present work, octanol-water partition coefficients of ALA and several of its esters have been determined to obtain a parameter related to their lipophilicity. The influence of parameters such as lipophilicity, concentration, time, and pH value on PpIX formation induced by ALA and its esters is then investigated in human cell lines originating from the lung and bladder. ALA esters are found to be more lipophilic than the free acid. The optimal concentration (c(opt), precursor concentration at which maximal PpIX accumulation is observed) is then measured for each precursor. Long-chained ALA esters are found to decrease the c(opt) value by up to two orders of magnitude as compared to ALA. The reduction of PpIX formation observed at higher concentrations than c(opt) is correlated to reduced cell viability as determined by measuring the mitochondrial activity. Under optimal conditions, the PpIX formation rate induced by the longer-chained esters is higher than that of ALA or the shorter-chained esters. A biphasic pH dependence on PpIX generation is observed for ALA and its derivatives. Maximal PpIX formation is measured under physiological conditions (pH 7.0-7.6), indicating that further enhancement of intracellular PpIX content may be achieved by adjusting the pharmaceutical formulation of ALA or its derivatives to these pH levels.  相似文献   

11.
Photodynamic therapy (PDT) based on the photosensitive protoporphyrin IX (PpIX) may prevent restenosis after transluminal angioplasty. PpIX is synthesized in mitochondria, which differ in number and activity among various tissues. Therefore, we questioned whether the course of PpIX concentration after systemic aminolaevulinic acid (ALA) administration differed among various arteries. ALA was administered intravenously (200 mg/kg) to male Wistar rats (n = 21). At varying time intervals (0, 1, 2, 3, 6, 12 and 24 h) both central and peripheral arteries were isolated and homogenized, and the concentration of the various heme intermediates was determined by a fluorometric extraction method. The maximal PpIX concentration was more than two-fold higher in peripheral arteries (20.49 +/- 3.0 to 24.0 +/- 7.5 pmol/mg protein) than in central arteries (0-9.46 +/- 0.01 pmol/mg protein) (P < 0.004). However, the amount of citrate synthase, reflecting the mitochondrial mass, was lower (0.14-0.61 and 1.87-2.32 U/mg protein, respectively). Apparently, the level of PpIX cannot simply be explained by the mitochondrial content of the arteries. The time interval of maximal PpIX accumulation was similar in peripheral and central arteries (2 h and 27 min vs. 2 h and 8 min) (P = 0.13). Thus, if the efficacy of PDT in vivo is directly related to the tissue concentration of PpIX, more effect can be expected in peripheral arteries than in central arteries.  相似文献   

12.
Limited depth of penetration significantly limits photodynamic therapy of nodular basal cell carcinoma (BCC) using topical δ(5)-aminolevulinic acid (ALA). To demonstrate safety and efficacy of orally administered ALA in inducing endogenous protoporphyrin IX (PpIX) production in BCC, 13 patients with BCC ingested ALA in a dose-escalation protocol. All dose ranges (10, 20 or 40 mg/kg single doses) resulted in formation of PpIX in human skin and BCC, measurable by in vivo fluorescence spectrophotometry. The PpIX fluorescence peaked in tumors before normal adjacent skin from 1 to 3 h after ALA ingestion. Gross fluorescence imaging of ex vivo specimens revealed greater PpIX fluorescence in tumor than normal skin only at the 40 mg/kg dose. Fluorescence microscopy confirmed this finding by showing distinct, full-thickness PpIX fluorescence in all subtypes of BCC only after ALA given at 40 mg/kg. Side effects were dose dependent and self limited. Photosensitivity lasting less than 24 h and nausea coinciding with peak skin PpIX fluorescence occurred at 20 and 40 mg/kg doses. After 40 mg/kg ALA, serum hepatic enzyme levels rose to a maximum within 24 h, then resolved over 1–3 weeks. Transient bilirubinuria occurred in two patients.  相似文献   

13.
Aminolevulinic acid photodynamic therapy (ALA-PDT) is a cancer therapy that combines the selective accumulation of a photosensitizer in tumor tissue with visible light (and tissue oxygen) to produce reactive oxygen species. This results in cellular damage and ablation of tumor tissue. The use of iron chelators in combination with ALA has the potential to increase the accumulation of the photosensitizer protoporphyrin IX (PpIX) by reducing its bioconversion to heme. This study compares directly for the first time the effects of the novel hydroxypyridinone iron chelating agent CP94 and the more clinically established iron chelator desferrioxamine (DFO) on the enhancement of ALA and methyl-aminolevulinate (MAL)-induced PpIX accumulations in cultured human cells. Cultured human cells were incubated with a combination of ALA, MAL, CP94 and DFO concentrations; the resulting PpIX accumulations being quantified fluorometrically. The use of iron chelators in combination with ALA or MAL was shown to significantly increase the amount of PpIX accumulating in the fetal lung fibroblasts and epidermal carcinoma cells; while minimal enhancement was observed in the normal skin cells investigated (fibroblasts and keratinocytes). Where enhancement was observed CP94 was shown to be significantly superior to DFO in the enhancement of PpIX accumulation.  相似文献   

14.
This report explores some properties of 80–200 nm nanoparticles containing 5‐aminolevulinic acid (ALA) and fullerene (C60) for photodynamic therapy (PDT). Compared with ALA, the nanoparticles yielded more protoporphyrin IX (PpIX) formation in cells and tissues and to a significant improvement in antitumor efficacy in tumor‐bearing mice. Maximum levels of PpIX were obtained 4 h after administration and selective PpIX formation in tumor was observed. These nanoparticles appear to be a useful vehicle for drug delivery purposes. In this study, a procedure for preparing fullerene nanoparticles containing ALA was developed. The product alone exhibited no detectable toxicity in the dark and was superior to ALA alone in promoting PpIX biosynthesis and PDT efficacy both in culture and in a murine tumor model. These results suggest that this procedure could be the basis for an improved PDT protocol for cancer control.  相似文献   

15.
Protoporphyrin IX (PpIX) produced from exogenous, orally administered 5-aminolevulinic acid (ALA) displays high tumor-selective uptake and is being successfully employed for fluorescence-guided resection (FGR) of human malignant gliomas. Furthermore, the phototoxicity of PpIX can be utilized for photodynamic therapy (PDT) of brain tumors, which has been shown previously. Here, the absolute PpIX concentration in human brain tissue was investigated following oral ALA administration (20 mg kg−1 b.w.). An extraction procedure was used to quantify PpIX in macroscopic tissue samples, weighing 0.013–0.214 g, obtained during FGR. The PpIX concentration was significantly higher in vital grade IV tumors (5.8 ± 4.8 μm , mean ± SD, range 0–28.2 μm , n = 8) as compared with grade III tumors (0.2 ± 0.4 μm , mean ± SD, range 0–0.9 μm , n = 4). There was also a large heterogeneity within grade IV tumors with PpIX displaying significantly lower levels in infiltration zones and necrotic regions as compared with vital tumor parts. The average PpIX concentration in vital grade IV tumor parts was in the range previously shown sufficient for PDT-induced tissue damage following irradiation. However, the feasibility of PDT for grade III brain tumors and for grade IV brain tumors displaying mainly necrotic tissue areas without solid tumor parts needs to be further investigated.  相似文献   

16.
Abstract— The subcellular and, specifically, mitochondrial localization of the photodynamic sensitizers Photofrin and aminolevulinic acid (ALA)-induced protoporphyrin-IX (PpIX) has been investigated in vitro in radiation-induced fibrosarcoma (RIF) tumor cells. Comparisons were made of parental RIF-1 cells and cells (RIF-8A) in which resistance to Photofrin-mediated photodynamic therapy (PDT) had been induced. The effect on the uptake kinetics of Photofrin of coincubation with one of the mitochondria-specific probes 10N-Nonyl acridine orange (NAO) or rhodamine-123 (Rh-123) and vice versa was examined. The subcellular colocalization of Photofrin and PpIX with Rh-123 was determined by double-label confocal fluorescence microscopy. Clonogenic cell survival after ALA-mediated PDT was determined in RIF-1 and RIF-8A cells to investigate cross-resistance with Photofrin-mediated PDT. At long (18 h) Photofrin incubation times, stronger colocalization of Photofrin and Rh-123 was seen in RIF-1 than in RIF-8A cells. Differences between RIF-1 and RIF-8A in the competitive mitochondrial binding of NAO or Rh-123 with Photofrin suggest that the inner mitochondrial membrane is a significant Photofrin binding site. The differences in this binding may account for the PDT resistance in RIF-8A cells. With ALA, the peak accumulations of PpIX occurred at 5 h for both cells, and followed a diffuse cytoplasmic distribution compared to mitochondrial localization at 1 h ALA incubation. There was rapid efflux of PpIX from both RIF-1 and RIF-8A. As with Photofrin, ALA-induced PpIX exhibited weaker mitochondrial localization in RIF-8A than in RIF-1 cells. Clonogenic survival demonstrated cross-resistance to incubation in PpIX but not to ALA-induced PpIX, implying differences in mitochondrial localization and/or binding, depending on the source of the PpIX within the cells.  相似文献   

17.
Many different types of mammalian cells accumulate fluorescing and photosensitizing concentrations of protoporphyrin IX (PpIX) when exposed to exogenous 5-aminolevulinic acid (ALA) in vivo or in vitro. Most types of malignant cells accumulate substantially more ALA-induced PpIX than do the normal cells from which they arose. Most types of malignant cells also are less differentiated than their normal counterparts. We therefore considered the possibility that malignant cells demonstrate a malignant ALA phenotype (accumulate abnormally large amounts of PpIX when exposed to exogenous ALA) as a direct consequence of their less differentiated state. Human promyelocyte cell line HL-60 and mouse preadipocyte cell line 3T3 L1 were induced to differentiate by exposing them to inducing agents in vitro. The HL-60 cells accumulated less ALA-induced PpIX when differentiated, but the 3T3 L1 cells accumulated more. It appears then that changes in the ALA phenotype with changes in the state of differentiation are cell-type specific. The decreased accumulation of ALA-induced PpIX that accompanied differentiation of the promyelocytic leukemia cells may have clinical application for rapid quantitation of the response of myelocytic leukemia patients to differentiation therapy.  相似文献   

18.
Photodynamic therapy (PDT) is a relatively new approach to the treatment of neoplasms which involves the use of photoactivatable compounds to selectively destroy tumors. 5-Aminolevulinic acid (ALA) is an endogenous substance which is converted to protoporphyrin IX (PpIX) in the synthetic pathway to heme. PpIX is a very effective photosensitizer. The goal of this study was to evaluate the effect of PDT using topical ALA on normal guinea pig (g.p.) skin and g.p. skin in which the stratum corneum was removed by being tape-stripped (TS). Evaluation consisted of gross examination, PpIX fluorescence detection, reflectance spectroscopy, and histology. There was no effect from the application of light or ALA alone. Normal non-TS g.p. skin treated with ALA and light was unaffected unless high light and ALA doses were used. Skin from which the stratum corneum was removed was highly sensitive to treatment with ALA and light: 24 h after treatment, the epidermis showed full thickness necrosis, followed by complete repair within 7 d. Time-dependent fluorescence excitation and emission spectra were determined to characterize the chromophore and to demonstrate a build-up of the porphyrin in the skin. These data support the view that PDT with topical ALA is a promising approach for the treatment of epidermal cutaneous disorders.  相似文献   

19.
Endogenously generated protoporphyrin IX (PpIX) from exogenous ALA can be an effective photosensitizer. PpIX accumulation is inversely dependent on available intracellular iron, which is required for the conversion of PpIX to heme. Iron also is necessary for cell replication. Since iron can be toxic, intracellular iron levels are tightly controlled. Activated and proliferating cells respond to the demand for intracellular iron by upregulating membrane expression of the transferrin receptor (CD71) which is needed for iron uptake. We predicted that activated lymphocytes (CD71 +) would preferentially accumulate PpIX because of their lower intracellular iron levels and because of competition for iron between ALA-induced heme production and cellular growth processes. Thus, the CD71+ cells could serve as PDT targets. Stimulation of human peripheral blood lymphocytes (PBL) with the mitogens, phytohemagglutinin A, concanavalin A and pokeweed prior to incubation with ALA results in PpIX accumulation correlating with level of activation. Activated lymphocytes expressing high levels of surface CD71 transferrin receptors generated more PpIX than those with low CD71 expression. Incubating activated cells in transferrin depleted medium (thereby decreasing the iron availability) further increased PpIX levels. Malignant, CD71 + T lymphocytes from a patient with cutaneous T-cell lymphoma (CTCL)/Sezary syndrome also accumulated increased PpIX levels in comparison to norma] lymphocytes. PDT of activated lymphocytes and Sezary cells after ALA incubation demonstrated preferential killing compared to normal, unstimulated PBL. These findings suggest a possible mechanism for the selectivity of ALA PDT for activated CD71+ cells. They also indicate a clinical use for ALA-PDT in therapy directed towards the malignant lymphocytes in leukemias and lymphomas, and as animmunomodulatory agent.  相似文献   

20.
Better noninvasive techniques are needed to monitor protoporphyrin IX (PpIX) levels before and during photodynamic therapy (PDT) of squamous cell carcinoma (SCC) of the skin. Our aim was to evaluate (1) multispectral fluorescent imaging of ultraviolet light (UV)‐induced cancer and precancer in a mouse model of SCC and (2) multispectral imaging and probe‐based fluorescence detection as a tool to study vitamin D (VD) effects on aminolevulinic acid (ALA)‐induced PpIX synthesis. Dorsal skin of hairless mice was imaged weekly during a 24‐week UV carcinogenesis protocol. Hot spots of PpIX fluorescence were detectable by multispectral imaging beginning at 14 weeks of UV exposure. Many hot spots disappeared after cessation of UV at week 20, but others persisted or became visible after week 20, and corresponded to tumors that eventually became visible by eye. In SCC‐bearing mice pretreated with topical VD before ALA application, our optical techniques confirmed that VD preconditioning induces a tumor‐selective increase in PpIX levels. Fluorescence‐based optical imaging of PpIX is a promising tool for detecting early SCC lesions of the skin. Pretreatment with VD can increase the ability to detect early tumors, providing a potential new way to improve efficacy of ALA‐PDT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号