首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The LH2 complex from Rhodopsudomonas (Rps.) palustris is unique in the heterogeneous carotenoid compositions. The dynamics of triplet excited state Carotenoids (3Car* has been investigated by means of sub-microsecond time-resolved absorption spectroscopy both at physiological temperature (295 K) and at cryogenic temperature (77K). Broad and asymmetric T n ←T 1 transient absorption was observed at room temperature following the photo-excitation of Car at 532 nm, which suggests the contribution from various carotenoid compositions having different numbers of conjugated C=C double bonds (Nc=c). The triplet absorption bands of different carotenoids, which superimposed at room temperature, could be clearly distinguished upon decreasing the temperature down to 77 K. At room temperature the shorter-wavelength side of the main Tn04T1 absorption band decayed rapidly to reach a spectral equilibration with a characteristic time constant of ∽1 μs, the same spectral dynamics, however, was not observed at 77 K. The aforementioned spectral dynamics can be explained in terms of the triplet-excitation transfer among heterogeneous carotenoid compositions. Global spectral analysis was applied to the time-resolved spectra at room temperature, which revealed two spectral components peaked at 545 and 565 nm, and assignable to the Tn04 T1 absorption of Cars with Nc=c=11 and Nc=c=13, respectively. Surprisingly, the decay time constant of a shorter-conjugated Car, i.e. 0.72 ώs (aerobic) and 1.36 ώs (anaerobic), is smaller than that of a longer-conjugated Car, i.e. 2.12 us (aerobic) and 3.75 ώs (anaerobic), which is contradictory to the general rule of carotenoids and relative polyenes. The results are explained in terms of triplet-excitation transfer among different types of Cars. It is postulated that two Cars with different conjugation lengths coexist in an α, β-subunit in the LH2 complex.  相似文献   

2.
Thermochromatium (Tch.) tepidum是一种中等嗜热的紫色光合细菌, 最佳生长温度为48-50 ℃; 其捕光天线复合物2 (LH2)含有非均一性脱辅基蛋白和类胡萝卜素(Car), 且高分辨率晶体结构未知. 我们通过超快光谱研究了分别采用去垢剂n-dodecyl-β-D-maltoside (DDM)和lauryldimethylamine oxide (LDAO)制备的LH2的激发态动力学, 观测到由细菌叶绿素(BChl)的Qy态介导的B800-to-B850单重态能量传递过程(时间尺度~1.2 ps, 用DDM制备的LH2), 以及由类胡萝卜素S2态介导的Car-to-Car和Car-to-BChl 单重态能量传递过程(~100 fs). 结果表明C=C共轭双键数目(NC=C)为11和12的两类Car共处于同一LH2复合物中; 相对于源自其它菌种、构成组分相对简单的LH2, Tch. tepidum的LH2中B800-B850的相对取向有较大差异. 本工作发现LH2中低含量类胡萝卜素组分anhydrorhodovibrin (NC=C=12)起着高效“能量陷阱”的作用, 可能是一种重要的光保护机制; 基于类胡萝卜素的超快谱带位移现象提出(OH-)spirilloxanthin(NC=C=13)距BChl分子可能比其它类胡萝卜素更近. 这些研究结果有助于进一步理解苛刻自然条件下生长的Tch. tepidum的捕光和光保护机制.  相似文献   

3.
In this paper, we report the results of a laser flash photolysis study of the reactions of a range of carotenoids with acylperoxyl radicals in polar and nonpolar solvents. The results show, for the first time, that carotenoid addition radicals do not react with oxygen to form carotenoid peroxyl radicals; an observation which is of significance in relation to antioxidant/pro-oxidant properties of carotenoids. Acylperoxyl radicals, generated by photolysis of ketone precursors in oxygenated solvents, display high reactivity toward carotenoids in both polar and nonpolar solvents, but the nature of the carotenoid radicals formed is dependent on solvent polarity. In hexane, acylperoxyl radicals react with carotenoids with rate constants in the region of 10(9) M(-1) s(-1) and give rise to transient absorption changes in the visible region that are attributed to the formation of addition radicals. All of the carotenoids show bleaching in the region of ground-state absorption and, with the exception of 7,7'-dihydro-beta-carotene (77DH), no distinct absorption features due to addition radicals are observed beyond the ground state absorption region. For 77DH, the addition radical displays an absorption band that is spectrally resolved from the parent carotenoid absorption. The rate of decay of the 77DH addition radical is unaffected by oxygen in the concentration range 10(-4)-10(-2) M, suggesting that these resonance-stabilized carbon-centered radicals are not scavenged by oxygen. At low incident laser intensities, the 77DH addition radical decay kinetics are 1st order with k(1) approximately 4 x 10(3) s(-1) at room temperature. The 1st order decay is attributed to an intramolecular cyclization process, which is supported by the substantial negative entropies of activation obtained from measurements of the decay rate constants for different 77DH addition radicals as a function of temperature. No transient absorption features are observed in the red or near-infrared regions in hexane for any of the carotenoids studied. In polar solvents such as methanol, acylperoxyl radicals also react with carotenoids with rate constants in the region of 10(9) M(-1) s(-1), but give rise to transient absorption changes in both the visible and the red/near-infrared regions, where it is evident that there are two distinct species. For 77DH, the addition radical absorption around 450 nm is still evident, although its kinetic behavior differs from its behavior in hexane. For 77DH and zeta-carotene (zeta-CAR) the spectral and kinetic resolution of the various absorption bands simplifies kinetic analysis. The kinetic evidence suggests that addition radical formation precedes formation of the two near-infrared absorbing species, and that the kinetics of the addition radical decay match the kinetics of formation of the first of these species (NIR1, absorbing at shorter wavelengths). The decay of NIR1 leads to NIR2, which is attributed to the carotenoid radical cation. The solvent dielectric constant dependence of the relative amounts of NIR1 and NIR2 formed leads us to speculate that NIR1 is an ion-pair. However, an alternative assignment for NIR1 is an isomer of the radical cation. The results, in terms of the pattern of reactivity the carotenoids display and of the properties of the carotenoid radicals formed, are discussed in relation to the antioxidant/pro-oxidant properties of carotenoids.  相似文献   

4.
采用飞秒时间分辨吸收光谱手段观测了在500和800 nm激发下高光培养的紫色光合细菌Rhodopseu-domonas(Rps). palustris外周捕光天线LH2(HL-LH2)中不同共轭链长类胡萝卜素(Carotenoid, 简称Car)和细菌叶绿素a(Bacteriachlorophyll a, 简称BChl a)的特征吸收光谱. 光谱动力学分析结果表明, HL-LH2中不同Car分子间可能存在复杂的单重激发态能量平衡过程, Car分子同时向BChl a分子发生多途径的单重激发态能量传递, B800主要接受来自Car的S2和S1态能量; B850则主要接受来自长共轭链Car(共轭双键数目n=13)的S1态和B800的激发态能量, 整个能量传递过程在3~5 ps内完成.  相似文献   

5.
Steady-state and ultrafast time-resolved optical spectroscopic investigations have been carried out at 293 and 10 K on LH2 pigment-protein complexes isolated from three different strains of photosynthetic bacteria: Rhodobacter (Rb.) sphaeroides G1C, Rb. sphaeroides 2.4.1 (anaerobically and aerobically grown), and Rps. acidophila 10050. The LH2 complexes obtained from these strains contain the carotenoids, neurosporene, spheroidene, spheroidenone, and rhodopin glucoside, respectively. These molecules have a systematically increasing number of pi-electron conjugated carbon-carbon double bonds. Steady-state absorption and fluorescence excitation experiments have revealed that the total efficiency of energy transfer from the carotenoids to bacteriochlorophyll is independent of temperature and nearly constant at approximately 90% for the LH2 complexes containing neurosporene, spheroidene, spheroidenone, but drops to approximately 53% for the complex containing rhodopin glucoside. Ultrafast transient absorption spectra in the near-infrared (NIR) region of the purified carotenoids in solution have revealed the energies of the S1 (2(1)Ag-)-->S2 (1(1)Bu+) excited-state transitions which, when subtracted from the energies of the S0 (1(1)Ag-)-->S2 (1(1)Bu+) transitions determined by steady-state absorption measurements, give precise values for the positions of the S1 (2(1)Ag-) states of the carotenoids. Global fitting of the ultrafast spectral and temporal data sets have revealed the dynamics of the pathways of de-excitation of the carotenoid excited states. The pathways include energy transfer to bacteriochlorophyll, population of the so-called S* state of the carotenoids, and formation of carotenoid radical cations (Car*+). The investigation has found that excitation energy transfer to bacteriochlorophyll is partitioned through the S1 (1(1)Ag-), S2 (1(1)Bu+), and S* states of the different carotenoids to varying degrees. This is understood through a consideration of the energies of the states and the spectral profiles of the molecules. A significant finding is that, due to the low S1 (2(1)Ag-) energy of rhodopin glucoside, energy transfer from this state to the bacteriochlorophylls is significantly less probable compared to the other complexes. This work resolves a long-standing question regarding the cause of the precipitous drop in energy transfer efficiency when the extent of pi-electron conjugation of the carotenoid is extended from ten to eleven conjugated carbon-carbon double bonds in LH2 complexes from purple photosynthetic bacteria.  相似文献   

6.
The T ← So absorption spectra of a p-terphenyl (TP) crystal at 77 K and room temperature were measured. These spectra were compared with the T ← So absorption and phosphorescence spectra of TP in solution. The comparison of these spectra gave some information about the potential curves of TP molecules as a function of the angle between the outer and central benzene rings both in the triplet and ground state.  相似文献   

7.
Electroabsorption (EA) spectra were recorded in the region of the reaction center (RC) Qy absorption bands of bacteriochlorophyll (Bchl) and bacteriopheophytin, to investigate the effect of carotenoid (Car) on the electrostatic environment of the RCs of the purple bacterium Rhodobacter (Rb.) sphaeroides. Two different RCs were prepared from Rb. sphaeroides strain R26.1 (R26.1-RC); R26.1 RC lacking Car and a reconstituted RC (R26.1-RC+ Car) prepared by incorporating a synthetic Car (3,4-dihydrospheroidene). Although there were no detectable differences between these two RCs in their near infrared (NIR) absorption spectra at 79 and 293 K, or in their EA spectra at 79 K, significant differences were detected in their EA spectra at 293 K. Three nonlinear optical parameters of each RC were determined in order to evaluate quantitatively these differences; transition dipole-moment polarizability and hyperpolarizability (D factor), the change in polarizability upon photoexcitation (Deltaalpha), and the change in dipole-moment upon photoexcitation (Deltamu). The value of D or Deltaalpha determined for each absorption band of the two RC samples showed similar values at 77 or 293 K. However, the Deltamu values of the special pair Bchls (P) and the monomer Bchls absorption bands showed significant differences between the two RCs at 293 K. X-ray crystallography of the two RCs has revealed that a single molecule of the solubilizing detergent LDAO occupies part of the carotenoid binding site in the absence of a carotenoid. The difference in the value of Deltamu therefore represents the differential effect of the detergent LDAO and the carotenoid on P. The change of electrostatic field around P induced by the presence of Car was determined to be 1.7 x 10(5) [V/cm], corresponding to a approximately 10% change in the electrostatic field around P.  相似文献   

8.
We present time-resolved fs two-photon pump-probe data measured with photosystem I (PS I) of Thermosynechococcus elongatus. Two-photon excitation (lambda(exc)/2 = 575 nm) in the spectral region of the optically forbidden first excited singlet state of the carotenoids, Car S1, gives rise to a 800 fs and a 9 ps decay component of the Car S1 --> S(n) excited-state absorption with an amplitude of about 47 +/- 16% and 53 +/- 10%, respectively. By measuring a solution of pure beta-carotene under exactly the same conditions, only a 9 ps decay component can be observed. Exciting PS I at exactly the same spectral region via one-photon excitation (lambda(exc) = 575 nm) also does not show any sub-ps component. We ascribe the observed constant of 800 fs to a portion of about 47 +/- 16% beta-carotene states that can potentially transfer their energy efficiently to chlorophyll pigments via the optically dark Car S1 state. We compared these data with conventional one-photon pump-probe data, exciting the optically allowed second excited state, Car S2. This comparison demonstrates that the fast dynamics of the optically forbidden state can hardly be unravelled via conventional one-photon excitation only because the corresponding Car S1 populations are too small after Car S2 --> Car S1 internal conversion. A direct comparison of the amplitudes of the Car S1 --> S(n) excited-state absorption of PS I and beta-carotene observed after Car S2 excitation allows determination of a quantum yield for the Car S1 formation in PS I of 44 +/- 5%. In conclusion, an overall Car S2 --> Chl energy-transfer efficiency of approximately 69 +/- 5% is observed at room temperature with 56 +/- 5% being transferred via Car S2 and probably very hot Car S1 states and 13 +/- 5% being transferred via hot and "cold" Car S1 states.  相似文献   

9.
Abstract— Polarized absorption, fluorescence and photoacoustic spectra of bacteriochlorophyll (BChl)-lipoprotein complexes from the purple bacterium Chromatium minutissimum oriented in stretched polyvinylalcohol films were measured at room temperature and 85 K. The preparations contain large amounts of the B800-820 antenna complexes. From polarized absorption spectra taken under various light beam incidence angles with respect to the film plane, conclusions concerning arrangement of pigment molecules in B800-820 complex are obtained. The transition moments of the BChl Qy band are not exactly parallel to the membrane plane. It seems that there are pools of differently oriented BChl chromophores absorbing in both 800 nm and 820 nm regions. Change in temperature strongly influences linear dichroism of carotenoids and BChl Qy bands. The reversible changes in absorption, linear dichroism and photoacoustic spectra caused by the variation in sample temperature suggest strongly the reversible twisting of carotenoid molecules, related probably to modification of the interactions between carotenoids and proteins. Various carotenoids exhibit different yield of thermal deactivation and this yield is also temperature dependent.  相似文献   

10.
The resonance Raman spectra of all-trans carotenoids have been observed in the region of 5000-500 cm−1 for samples in glassy solution at 77 K and in the in vivo state at room temperature. Prominent bands in the wavenumber region higher than 2000 cm−1 are assigned to either overtones or combinations of three modes due to skeletal stretches and the CH3 in-plane rock. From the wavenumbers of the observed Raman bands, anharmonicity constants for these three modes (including cross-term constants) are obtained. It is found that, for each carotenoid studied, the cross-term anharmonicity constant between the CC and CC stretches is significantly larger than the other anharmonicity constants.  相似文献   

11.
Abstract— Three carotenoids, spheroidene, 3,4-dihydrospheroidene and 3,4,5,6-tetrahydrospheroidene, having 8, 9 and 10 conjugated carbon-carbon double bonds, respectively, were incorporated into Rhodobacter (Rb.) sphaeroides R-26.1 reaction centers. The extents of binding were found to be 95±5% for spheroidene, 65±5% for 3,4-dihydrospheroidene and 60±10% for 3,4,5,6-tetrahydrospheroidene. The dynamics of the triplet states of the primary donor and carotenoid were measured at room temperature by flash absorption spectroscopy. The carotenoid, spheroidene, was observed to quench the primary donor triplet state. The triplet state of spheroidene that was formed subsequently decayed to the ground state with a lifetime of 7.0±0.5 μs. The primary donor triplet lifetime in the Rb. sphaeroides R-26.1 reaction centers lacking carotenoids was 60±5 μs. Quenching of the primary donor triplet state by the carotenoid was not observed in the Rb. sphaeroides R-26.1 reaction centers containing 3,4-dihydrospheroidene nor in the R-26.1 reaction centers containing 3,4,5,6-tetrahydrospheroidene. Triplet-state electron paramagnetic resonance was also carried out on the samples. The experiments revealed carotenoid triple-state signals in the Rb. sphaeroides R-26.1 reaction centers incorporated with spheroidene, indicating that the primary donor triplet is quenched by the carotenoid. No carotenoid signals were observed from Rb. sphaeroides R-26.1 reaction centers incorporating 3,4-dihydrospheroidene nor in reaction centers incorporating 3,4,5,6-tetrahydrospheroidene. Circular dichroism, steady-state absorbance band shifts accompanying the primary photochemistry in the reaction center and singlet energy transfer from the carotenoid to the primary donor confirm that the carotenoids are bound in the reaction centers and interacting with the primary donor. These studies provide a systematic approach to exploring the effects of carotenoid structure and excited state energy on triplet transfer between the primary donor and carotenoids in reaction centers from photosynthetic bacteria.  相似文献   

12.
Laser-induced changes in the absorption spectra of isolated light-harvesting chlorophyll a/b complex (LHC II) associated with photosystem II of higher plants have been recorded under anaerobic conditions and at ambient temperature by using multichannel detection with sub-microsecond time resolution. Difference spectra (ΔA) of LHC II aggregates have been found to differ from the corresponding spectra of trimers on two counts: (i) in the aggregates, the carotenoid (Car) triplet–triplet absorption band (ΔA>0) is red-shifted and broader; and (ii) the features attributable to the perturbation of the Qy band of a chlorophyll a (Chla) by a nearby Car triplet are more pronounced, than in trimers. Aggregation, which is known to be accompanied by a reduction in the fluorescence yield of Chla, is shown to cause a parallel decline in the triplet formation yield of Chla; on the other hand, the efficiency (100%) of Chla-to-Car transfer of triplet energy and the lifetime (9.3 μs) of Car triplets are not affected by aggregation. These findings are rationalized by postulating that the antenna Cars transact, besides light-harvesting and photoprotection, a third process: energy dissipation within the antenna. The suggestion is advanced that luteins, which are buried inside the LHC II monomers, as well as the other, peripheral, xanthophylls (neoxanthin and violaxanthin) quench the excited singlet state of Chla by catalyzing internal conversion, a decay channel that competes with fluorescence and intersystem crossing; support for this explanation is presented by recalling reports of similar behaviour in bichromophoric model compounds in which one moiety is a Car and the other a porphyrin or a pyropheophorbide.  相似文献   

13.
Multichannel flash spectroscopy (with microsecond time resolution) has been applied to carotenoid (Car)-containing and Car-less reaction centers (RC) of Rhodobacter sphaeroides with a view to investigate the interaction between the Car and its neighboring pigments at room temperature. Under neutral redox potential conditions, where the primary quinone acceptor (QA) is oxidized, the light-induced spectral changes in the 350-1000 nm region are attributed to the photochemical oxidation of the special pair (denoted here as P870), the generation of P870(+)QA(-), and the attendant electrochromism of adjacent chromophores. A bathochromic shift of <1 nm in the visible absorption region of Car reveals the sensitivity of Car to the P870 photooxidation. Under low redox potential conditions, where QA is reduced, P870 triplets (P870(+)) are formed. The time-resolved triplet-minus-singlet (TmS) spectrum of Car-less RC shows a deep bleaching at 870 nm, which belongs to P870(+), and additional (but smaller) bleaching at 800 nm; the entire spectrum decays at the same rate (with a lifetime of about 50 micros). The bleaching at 800 nm arises from the pigment interaction between P870(+) and the accessory bacteriochlorophylls on A and B branches (BA,B). In Car-containing RC, the TmS spectra of Car are accompanied by two smaller, negative signals--a sharp peak at 809 +/- 2 nm and a broad band at 870 nm--which decay at the same rate as the TmS spectrum of Car (ca 10 micros). The former is ascribed to the perturbation, by Car(+), of the absorption spectrum of BB; the latter, to the TmS spectrum of P870(+), a species that appears to be in approximate thermal equilibrium with Car(+). These assignments are consistent with the absorption-detected magnetic resonance spectra obtained by other workers at low temperatures.  相似文献   

14.
[Re(CO)3(CNx)(L)]+, where CNx = 2,6-dimethylphenylisocyanide, forms complexes with L = 1,10-phenanthroline (1), 4-methyl-1,10-phenanthroline (2), 4,7-dimethyl-1,10-phenanthroline (3), 3,4,7,8-tetramethyl-1,10-phenanthroline (4), 2,9-dimethyl-1,10-phenanthroline (5) and 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (6). The metal-ligand-to-ligand charge transfer transition (MLLCT) absorption bands follow the series: (27800 cm(-1)) > 1, 2, 4 and 5(27500 cm(-1)) > 6 (26600 cm(-1)). Density functional theory (DFT) geometry optimizations reveal elongated Re-N (L) distances of 2.28 and 2.27 A for 5 and 6, respectively, compared to 2.23 A for 1-4. The reversible reduction potentials (E(1/2(red))) of 1-4 are linearly dependent on the B3LYP calculated LUMO energies. Time-dependent (TD) DFT and conductor-like polarizable continuum model (CPCM) calculated singlet excited states deviate by 700 cm(-1) or less from the experimental absorption maxima and aid in the spectral assignments. The (3)MLLCT emitting state energies are within 900 cm(-1) of the experimental 77 K emission energies for 1-6. The 77 K emission energies, E(1/2(red)), and the room temperature emission quantum yields (phi(LUMO)(em)) decrease in the order 1 >2 >3 >4 whereas E(LUMO) and the room temperature emission energies follow the opposite trend. The emission lifetimes (tau(em)) decrease in the order 3 > 4 >2 >1 >5 with 3 having the highest emission lifetime values of 26.9 micros at room temperature and 384 micros at 77 K and complex 5 having the lowest emission lifetimes of 4.6 micros at room temperature and 61 micros and 77 K.  相似文献   

15.
Abstract— The absorption and emission properties of the photochemically produced dipyrimidine adducts are analyzed at 300 and 77K. Those adducts which have a saturated C(5)—C(6) bond in the pyrimidin-2,4-dione (Pyr) ring and a pyrimidin-2-one (Pyo) ring behave spectroscopically as a substituted Pyo. However, those consisting of one Pyr and one Pyo moiety can be considered as bichromophoric molecules and their spectral properties can be understood in terms of the relative torsional angle between the two rings. The adduct with the most bulky substituents ortho to the torsional bond bears the largest torsional angle and exhibits relatively independent absorption and emission phenomenon. At the other extreme, those adducts with no substituents at this position exist as almost planar molecules and exhibit considerable overlap of absorption bands as well as room temperature fluorescence which, in certain cases, is characteristic of intramolecular exciplex interaction. Using inter-ring torsional angles of ortho-substituted biphenyl molecules as a basis for comparative calculation, quantitative estimates of the torsional angles in dipyrimidine adducts at 300K have been made.  相似文献   

16.
Many of the spectroscopic features and photophysical properties of carotenoids are explained using a three-state model in which the strong visible absorption of the molecules is associated with an S0 (1(1)Ag-) --> S2 (1(1)Bu+) transition, and the lowest lying singlet state, S1 (2(1)Ag-), is a state into which absorption from the ground state is forbidden by symmetry. However, semiempirical and ab initio quantum calculations have suggested additional excited singlet states may lie either between or in the vicinity of S1 (2(1)Ag-) and S2 (1(1)Bu+), and some ultrafast spectroscopic studies have reported evidence for these states. One such state, denoted S*, has been implicated as an intermediate in the depopulation of S2 (1(1)Bu+) and as a pathway for the formation of carotenoid triplet states in light-harvesting complexes. In this work, we present the results of an ultrafast, time-resolved spectroscopic investigation of a series of open-chain carotenoids derived from photosynthetic bacteria and systematically increasing in their number of pi-electron carbon-carbon double bonds (n). The molecules are neurosporene (n = 9), spheroidene (n = 10), rhodopin glucoside (n = 11), rhodovibrin (n = 12), and spirilloxanthin (n = 13). The molecules were studied in acetone and CS2 solvents at room temperature. These experiments explore the effect of solvent polarity and polarizability on the spectroscopic and kinetic behavior of the molecules. The molecules were also studied in ether/isopentane/ethanol (EPA) glasses at 77 K, in which the spectral resolution is greatly enhanced. Analysis of the data using global fitting techniques has revealed the ultrafast dynamics of the excited states and spectral changes associated with their decay, including spectroscopic features not previously reported. The data are consistent with S* being identified with a twisted conformational structure, the yield of which is increased in molecules having longer pi-electron conjugations. In particular, for the longest molecule in the series, spirilloxanthin, the experiments and a detailed quantum computational analysis reveal the presence of two S* states associated with relaxed S1 (2(1)Ag-) conformations involving nearly planar 6-s-cis and 6-s-trans geometries. We propose that in polar solvents, the ground state of spirilloxanthin takes on a corkscrew conformation that generates a net solute dipole moment while decreasing the cavity formation energy. Upon excitation and relaxation into the S1 (2(1)Ag-) state, the polyene unravels and flattens into a more planar geometry with comparable populations of 6-s-trans and 6-s-cis conformations.  相似文献   

17.
This paper describes the preparation of [Cu(bh)(2)(H(2)O)(2)](NO(3))(2)], [Cu(ibh)(2)(NO(3))(2)], [Cu(ibh)(2)(H(2)O)(2)](NO(3))(2) and [Cu(iinh)(2)(NO(3))(2)] (bh=benzoyl hydrazine (C(6)H(5)CONHNH(2)); ibh=isonicotinoyl hydrazine (NC(5)H(4)CONHNH(2)); ibh=isopropanone benzoyl hydrazone (C(6)H(5)CONHN=C(CH(3))(2); iinh=isopropanone isonicotinoyl hydrazone (NC(5)H(4)CONHN=C(CH(3))(2)). These copper(II) complexes are characterized by elemental analyses, molar conductances, dehydration studies, ESR, IR and electronic spectral studies. The electronic and ESR spectra indicate that each complex exhibits a six-coordinate tetragonally distorted octahedral geometry in the solid state and in DMSO solution. The ESR spectra of most of the complexes are typically isotropic type at room temperature (300K) in solid state as well as in DMSO solution. However, all the complexes exhibit invariably axial signals at 77K in DMSO solution. The trend g(||)>g( perpendicular)>g(e,) observed in all the complexes suggests the presence of an unpaired electron in the [Formula: see text] orbital of the Cu(II). The bh and inh ligands bond to Cu(II) through the >CO and NH(2) groups whereas, ibh and iinh bond through >CO and >CN groups. The IR spectra of bh and ibh complexes also show HOH stretching and bending modes of coordinated water.  相似文献   

18.
A number of polyene alcohols related to retinol as homologues have been examined for their spectral and photophysical properties. The absorption spectra of the polyene alcohols with short polyene chainlength show an intense band system with its maximum at 3000–4000 cm-1 above that of the main band system. The intensity of this higher-energy band system decreases sharply as the polyene chainlength is increased. All the polyene alcohols fluoresce strongly or moderately strongly at 77 K, the intrinsic fluorescence lifetimes being significantly longer than those expected from the oscillator strengths of the main, low-energy absorption band system. Fluorescence (relatively weak) is also observed at room temperature in the cases of polyene alcohols of long chainlength. A discussion is presented regarding the possible assignments of the various observed absorption band systems, state order and nature of the lowest excited singlet state, and aggregate formation (in 3-methylpentane at 77 K) and its effect on spectral and photodynamical behavior.  相似文献   

19.
Carotenoid (Car) radical intermediates formed upon catalytic or photooxidation of lutein (I), 7'-apo-7',7'-dicyano-beta-carotene (II), and lycopene (III) inside Cu(II)-MCM-41 molecular sieves were studied by pulsed electron nuclear double resonance (ENDOR) spectroscopies. The Davies and Mims ENDOR spectra (15-20 K) were simulated using the hyperfine coupling constants predicted by density functional theory (DFT) calculations. The DFT calculations revealed that upon chemical oxidation, carotenoid radical cations (Car*+) are formed, whereas carotenoid neutral radicals (#Car*) are produced by proton loss (indicated by #) from the radical cation. This loss is to first order independent of polarity or hydrogen bonding for carotenoids I, II, or III inside Cu(II)-MCM-41 molecular sieves.  相似文献   

20.
The ESR spectra of peroxy radicals in irradiated powders and oriented samples of polytetrafluoroethylene (PTEE) have been measured with a K-band spectrometer, and the principal values and directions of the g tensor were determined both at room temperature and at 77°K. In contrast to the spectra of the usual peroxy radicals, those trapped in γ-irradiated PTFE exhibited an ESR spectrum apparently having a larger principal value for g⊥ than for g∥ when measured at room temperature, although the normal principal values were observed at 77°K. As for the directions of the principal axes, g∥ was directed along the chain axis at room temperature and was perpendicular to the chain axis at 77°K. From the temperature change of the g tensor and the line shapes in the oriented samples, it is shown that the observed temperature change of the spectra is due to rapid rotation at room temperature around the chain axis rather than around the C? O bond axis. Assuming this, the apparent principal values of the g tensor at room temperature were calculated from the g tensor obtained at 77°K. for the rigid state, and the results are in good agreement with observations at room temperature. A structure for the peroxy radicals is also proposed. In addition, the spectral line shape function for the uniaxially oriented samples has been derived.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号