首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 46 毫秒
1.
秦伟平  王淑梅 《发光学报》1999,20(2):123-125
从理论上研究了具有分子振动能级结构的激光染料分子的反斯托克斯荧光制冷总是根据吸收光谱和荧光发射谱,对Rhodamine101溶液的反斯托克斯我制冷有力进行了数值计算,得到了用该种材料实现激光制冷的条件与制冷效率相关的曲线。  相似文献   

2.
Tm3+掺杂材料激光冷却的研究   总被引:1,自引:1,他引:0  
贾佑华  印建平 《光学学报》2005,25(10):375-1379
固体材料的激光制冷又称反斯托克斯荧光制冷,是近年来刚兴起的全光学制冷技术。该技术的核心问题是制冷材料的选择。以Tm^3+掺杂离子为例,从理论上分析了最小制冷能级间距与激光抽运速率的关系,研究了不同抽运速率下制冷功率与能级间距的关系以及热-光转换效率与能级间距的关系,获得了最佳热-光转换效率与抽运速率的关系。结果表明,最小的制冷能级间距约为4500cm^-1,能级间距在5000~6000cm^-1的宽度是比较合适的。最后探讨了Tm^3+掺杂材料用于激光冷却的可行性,许讨论了制冷基体材料的合理选择问题。  相似文献   

3.
激光制冷   总被引:1,自引:0,他引:1  
介绍了激光制冷的特点、原理以及发展历史 ,描述了典型的激光制冷装置及其工作过程 ,指出了目前激光制冷存在的问题和今后的研究方向。  相似文献   

4.
在能量传递型激光制冷中,对于非均匀线宽比较窄的情况,引起最大制冷效率的激发光频率不随温度的变化而变化最大制冷效率与温度呈三次暴的关系。对于非均匀线宽比较宽的情况。随着温度的降低,最佳激发光频率与非均匀线形的中心频率差越来越大,并在较低的温度下迅速拉大它们间的距离。由能量传递机制所引起的荧光制冷最大效率也随着温度的降低而越来越低,并在最后趋于零。它们随温度的降低而降低的规律与实验中得到的结论相符合。  相似文献   

5.
激光导的反斯托克斯荧光制冷   总被引:3,自引:0,他引:3  
秦伟平  张家骅 《物理》1998,27(6):323-328
激光诱导的反斯托克斯荧光制冷,是近年来刚刚起步的新的制制冷技术,光致反射托凶斯荧光的发射为凝聚态物质锦蛉提供了物理学基础,激光制冷具人体积小、重量轻、无噪声、无振动、无污染、无电磁辐射优点,可望在不义的将来成为一项实用的制冷技术,该技术在光计算、光存储、超导、空间技术、集成光学、光通信和电子工业等领域具有广泛的应用前景。  相似文献   

6.
固体中反斯托克斯荧光制冷的两种基本机制   总被引:2,自引:1,他引:1  
秦伟平  张家骅 《发光学报》1999,20(2):126-129
研究和论术字激光制冷的两种机制-ASFCSC和ASFCET,以及它们的相互关系和应用条件,提出了双机制并行制冷的概念,探讨了双机制并行制冷的可能性。  相似文献   

7.
激光诱导的反斯托克斯荧光制冷,是近年来刚刚起步的新的制冷技术.光致反斯托克斯荧光的发射为凝聚态物质激光制冷提供了物理学基础.激光制冷具有体积小、重量轻、无噪声、无振动、无污染、无电磁辐射等优点,可望在不久的将来成为一项实用的制冷技术.该技术在光计算、光存储、超导、空间技术、集成光学、光通信和电子工业等领域具有广泛的应用前景.  相似文献   

8.
反斯托克斯荧光制冷的研究进展与综述   总被引:4,自引:1,他引:3  
秦伟平 《物理学进展》2000,20(2):93-167
反斯托克斯荧光制冷(Anti-Stokes Fluorescent Cooling)也被称为激光制冷(Laser Cooling)。自1995年以来,该项研究取得了飞速的发展。上前人们利用激光制冷的方法已经得到了比家用冰箱冷冻室还低的温度,并能够利用半导体量子阱材料得到低于液氮温区的降温。由于这项技术具有全光性,它的制冷器具有体积小、重量轻、无电磁辐射、无振动、无噪声等特点,因此也就具有非常诱人的  相似文献   

9.
秦伟平 《物理学进展》2011,20(2):93-167
反斯托克斯荧光制冷 (Anti StokesFluorescentCooling)也被称为激光制冷 (LaserCooling)。自 1 995年以来 ,该项研究取得了飞速的发展。目前 ,人们利用激光制冷的方法已经得到了比家用冰箱冷冻室还低的温度 ,并能够利用半导体量子阱材料得到低于液氮温区的降温。由于这项技术具有全光性 ,它的制冷器具有体积小、重量轻、无电磁辐射、无振动、无噪声等特点 ,因此也就具有了非常诱人的应用前景和符合军事、空间、集成光学、微电子、医学等领域的特殊要求 ,而被国外研究者所重视。做为一项基本技术 ,激光制冷研究的突破必然会导致许多对温度有特殊要求的高技术实用化 ,推动那些领域向前发展。本文详细地介绍了反斯托克斯荧光制冷研究的历史和最新进展 ,详细地介绍了该项研究中的方法和理论。着重介绍了激光制冷的热力学限制、发光过程的热力学理论 ,探讨激光制冷产生的机制和制冷理论。最后 ,对激光制冷器的发展前景和设计依据进行了讨论 ,尝试性地探讨了线圈型制冷器、用于芯片的制冷器和单分子 光子泵型制冷器的应用考虑。  相似文献   

10.
反斯托克斯荧光制冷的发展回顾和研究现状   总被引:1,自引:0,他引:1  
从 1 995年 Epstein实现了光与热制冷效应的历史性突破以来 ,由于该制冷方法具有全光性的独特优点 ,同时制备的制冷器具有无振动和噪声、无电磁辐射、体积小、重量轻、可靠性高等特点 ,因此反斯托克斯荧光制冷器在军事、航天卫星、微电子、低温物理与工程等领域具有非常诱人的应用前景。文中首先介绍了反斯托克斯荧光制冷的物理原理 ,其次着重介绍了该制冷方式的发展历史和研究现状 ,最后对这一研究作了展望。  相似文献   

11.
Laser Cooling and Trapping of Sodium Atoms in Magneto-optical Trap   总被引:3,自引:1,他引:2  
LaserCoolingandTrappingofSodiumAtomsinMagneto-opticalTrap¥LIUXunming;LINYueming;ZHOUShanyu;HUOYunsheng;WANGYuzhu(Laboratoryfo...  相似文献   

12.
高能激光能量计校准方法研究   总被引:1,自引:3,他引:1  
刘国荣  吴洪才 《光子学报》2007,36(6):982-985
给出了一种绝对式高能激光能量计光电校准方法.该方法以大功率灯作为校准光源,通过测量灯两端的电压以及电流获得电能值,去掉灯所消耗的热能,得到灯所发出的光能.所设计平板能量计将大功率灯密封在高能激光能量计内,光能全部被能量计吸收.根据能量计输出值以及光能值便可实现能量计光电校准.结果表明,能量计光电校准不确定度约为1.5%.  相似文献   

13.
单分子—光子制冷泵   总被引:5,自引:2,他引:3  
秦伟平 《发光学报》1999,20(4):372-375
在分子尺度上研究了反散托克斯荧光制冷的微观机制,首次提出“单分子-光子泵(SMPC)”概念。阐述了单个分子就可以制冷的观点,提出了在特定的下,单个分子可成为一台最小制冷机。通过分析该“单分子-光子泵”制冷的工作原理,论述了它的工作过程和特点,最后讨论了影响“单分子-光子泵”制冷效率的关键条件。  相似文献   

14.
为了得到一种三倍频效率高达60%的355 nm脉冲激光器,采用曲率半径分别为2 m的凹凸高斯镜和9 m的平凹全反镜组合作为谐振腔,加以电光调Q,得到1 064 nm高光束质量激光输出,再将其进行行波放大,获得重复频率10 Hz、脉宽7.3 ns、单脉冲能量1.01 J的1 064 nm基频光输出。利用Ⅰ类相位匹配LBO晶体进行二倍频、Ⅱ类相位匹配LBO晶体进行三倍频以得到波长为355 nm的紫外光输出。通过二倍频和三倍频输出特性和非线性晶体参数的分析和实验调试,最终获得了单脉冲能量为608 mJ、脉宽为5.7 ns、线宽为2 nm的紫外激光输出。通过优化二倍频的转换效率,可使1 064 nm基频光到三倍频得到的355 nm紫外光的转换效率达60%。  相似文献   

15.
高热负荷固体激光介质的热效应已经成为制约激光器功率进一步提高的严重障碍,只有对激光介质进行有效的冷却才能保证其安全运行。以不均匀换热系数模型为基础,研究了具有非均匀内热源的侧面双向抽运板状激光介质在狭窄通道强制对流冷却情况下的耦合换热问题,对热汇冷却方案下介质的温度分布和热应力分布进行了数值模拟和分析,并对复合介质、蓝宝石和金刚石三种热汇材料进行对比。结果表明,忽视换热系数的非均匀性将导致应力计算结果偏低。对于侧面抽运、侧面冷却的激光介质,金刚石热汇冷却方案最佳,蓝宝石热汇方案次之,而复合介质方案不宜采用。  相似文献   

16.
朱瑞 《计算物理》2007,24(6):693-697
讨论考虑洪特耦合的两带赫伯德模型得到的一维自旋轨道模型中自旋-轨道能隙的产生.运用SU(4)赝费米子表象下的平均场理论,计算求得价键序参数、准粒子激发谱能隙和自旋、轨道密度-密度关联函数随系统耦合参数变化的结果.随洪特耦合相互作用由零开始增强,系统激发谱能隙逐渐打开,并且系统在参数取值为J1/J2=1/3处由具有阻错的无序状态相变到自旋铁磁有序和轨道反铁磁有序的状态.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号