首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nd:(La, Sr)(Al, Ta)O3 (Nd:LSAT) crystal was grown by the Czochralski method. The absorption and fluorescence spectra of Nd:LSAT crystal at room temperature were investigated. With a fiber-coupled diode laser as pump source, the continuous-wave (CW) laser action of Nd:LSAT crystal was demonstrated. The result of diode-pumped laser operation of Nd:LSAT crystal single crystal is reported for what is to our knowledge the first time. The maximum output power at 1064 nm was obtained to be 165 mW under the incident pump power of 3 W, with the slope efficiency 10.9%.  相似文献   

2.
We present for the first time a Nd:YVO4 laser emitting at 1064 nm intracavity pumped by a 916 nm diode-pumped Nd:LuVO4 laser. A 809 nm laser diode is used to pump the Nd:LuVO4 crystal emitting at 916 nm, a Nd:YVO4 laser crystal was pumped at 916 nm and lased at 1064 nm. Intracavity sum-frequency mixing at 916 and 1064 nm was then realized in a LiB3O6 (LBO) crystal to reach the blue range. We obtained a continuous-wave output power of 216 mW at 492 nm under 19.6 W of incident pump power at 809 nm.  相似文献   

3.
We present a laser architecture to obtain continuous-wave blue radiation at 488 nm. A 808 nm diode-pumped the Nd:YVO4 crystal emitting at 914 nm. A part of the pump power was then absorbed by the Nd:YVO4 crystal. The remaining was used to pump the Nd:YLiF4 (Nd:YLF) crystal emitting at 1047 nm. Intracavity sum-frequency mixing at 914 and 1047 nm was then realized in a BiB3O6 (BiBO) crystal to reach the blue radiation. We obtained a continuous-wave output power of 339 mW at 488 nm with a pump laser diode emitting 18.3 W at 808 nm.  相似文献   

4.
We report an Yb:Sr5(PO4)3F (Yb:S-FAP) laser emitting at 985 nm intracavity pumped by a 912 nm diode-pumped Nd:GdVO4 laser. A 808 nm diode laser is used to pump the Nd:GdVO4 crystal emitting at 912 nm, and the Yb:S-FAP laser emitting at 985 nm intracavity pumped at 912 nm. With incident pump power of 17.5 W, intracavity second harmonic generation has been demonstrated with a power of 131 mW at 492.5 nm by using a LBO nonlinear crystal.  相似文献   

5.
We report a laser architecture to obtain continuous-wave (cw) blue radiation at 462 nm. A 808 nm diode-pumped the Nd:YVO4 crystal emitting at 914 nm. A part of the pump power was then absorbed by the Nd:YVO4 crystal. The remaining was used to pump the Nd:CNGG crystal emitting at 935 nm. Intracavity sum-frequency mixing at 914 and 935 nm was then realized in a LiB3O5 (LBO) crystal to reach the blue radiation. We obtained a continuous-wave output power of 892 mW at 462 nm with a pump laser diode emitting 18.4 W at 808 nm.  相似文献   

6.
We present a laser architecture to obtain continuous-wave blue radiation at 489 nm. An 809 nm diode-pumped the Nd:LuVO4 crystal emitting at 916 nm. A part of the pump power was then absorbed by the Nd:LuVO4 crystal. The remaining was used to pump the Nd:YLiF4 (Nd:YLF) crystal emitting at 1047 nm. Intracavity sum-frequency mixing at 916 and 1047 nm was then realized in a LiB3O5 (LBO) crystal to reach the blue radiation. We obtained a continuous-wave output power of 425 mW at 489 nm with a pump laser diode emitting 18.4 W at 809 nm.  相似文献   

7.
A diode-pumped passively Q-switched Nd:Lu0.15Y0.85VO4 laser with a GaAs output coupler is demonstrated. By using a mixed crystal Nd:Lu0.15Y0.85VO4 as laser medium, the passively Q-switched laser can generate shorter pulse width with higher peak power in comparison with the passively Q-switched Nd:LuVO4 or Nd:YVO4 lasers under the same laser cavity. At the incident pump power 11.9 W, the minimum pulse width of 3.23 ns and the maximum peak power 1.67 kW can be obtained. The average output power and the pulse repetition rate of the laser are also measured. The experimental results show that the mixed crystal is a promising laser medium for shorter Q-switched pulse with higher peak power.  相似文献   

8.
We present for the first time a Nd:YAG laser emitting at 1064 nm intracavity pumped by a 946 nm diode-pumped Nd:YAG laser. A 885 nm laser diode is used to pump the first Nd:YAG crystal emitting at 946 nm, and the second Nd:YAG laser emitting at 1064 nm intracavity pumped at 946 nm. We achieved an output power of 7.97 W at 1064 nm for an absorbed pump power at 946 nm of 9.55 W, corresponding to an optical efficiency of 83.4%. The beam quality M2 quality factor is about 1.1 at the maximum output power.  相似文献   

9.
J Zhang  H Yu  Y Li  L Han  Y Wu  H Zhang 《Optics letters》2012,37(17):3501-3503
We report efficient, diode-pumped, self-frequency doubling (SFD) in the newly developed laser crystal Nd3+:Na3La9O3(BO3)8 (Nd:NLBO). More than 730?mW of fundamental output power at 1072?nm was achieved with a slope efficiency of 16.2%. With incident pump power of 8?W, 29?mW of green cw laser emission at 536?nm was observed with proper phase matching. This initial performance and the good optical properties of the crystalline host are encouraging for the development of a high power diode-pumped SFD visible light laser source.  相似文献   

10.
Jimin Yang  Jie Liu  Jingliang He 《Optik》2004,115(11-12):538-540
We report a high-power continuous-wave(cw) diode-pumped efficient 1.34 μm Nd:YVO4 laser. The laser properties of a low Nd3+-doped concentration of the Nd:YVO4 crystal operating at 1.34 μm formed with a simple plane-concave cavity have been demonstrated. With the incident pump power of 22 W, an output power of 8.24 W was obtained, giving an optical conversion efficiency of 37.5% and slope efficiency of 40%. The thermal effects of cw end-pumped solid-state lasers were studied.  相似文献   

11.
A model of the laser-diode pumped solid-state laser is developed to deduce the minimum average radii of the pump beam in the solid medium, since the smaller the cavity waist, the higher the laser output power is expected to be. With an appropriate coupling system consisting of the collimating lens, prism pair and focusing lens, a diode-pumped single-frequency Nd:YVO4/KTP intracavity frequency-doubling cw laser has been demonstrated through the precise temperature control of the Nd:YVO4 crystal, the KTP crystal and the diode laser. The 532nm single-frequency output power of 40.4mW (in fact 55mW if the reflection loss of the triangular prism is taken into account) is obtained for an incident power of 515mW. It is derived theoretically and is verified in experiment that the frequency drift of the free-running laser can be reduced by increasing the cavity length.  相似文献   

12.
By using a-cut Nd:Lu0.15Y0.85VO4 mixed crystal as laser gain medium, a diode-pumped passively Q-switched and mode-locked (QML) laser with a GaAs saturable absorber in a Z-type folded cavity is demonstrated for the first time. The Q-switched mode-locked laser pulses with about 90% modulation depth are obtained as long as the pump power reached the oscillation threshold. The repetition rate of the passively Q-switched pulse envelope ranges from 50 to 186 kHz as the pump power increases from 0.915 to 6.520 W. Under an incident pump power of 6.52 W, the QML pulses with the largest average output power of 694 mW, the shortest pulse width of 200 ns and the highest pulse energy of 3.73 μJ are obtained. The mode-locked pulse width inside the Q-switched envelope is estimated to be about 275 ps. The experimental results show that Nd:Lu0.15Y0.85VO4 is a promising mixed crystal for QML laser.  相似文献   

13.
We present what is, to the best of our knowledge, the first diode-pumped Nd:La3Ga5SiO14 (Nd:LGS) laser emitting at 888 nm, based on the 4 F 3/2-4 I 9/2 transition, generally used for a 904 nm emission. The use of a pump module with 16 passes through the crystal allowed the realization of a Nd:LGS thin-disk laser with 1.41 W of continuous wave (cw) output power at 888 nm. Moreover, intracavity second-harmonic generation (SHG) in cw mode has also been demonstrated with a power of 221 mW at 444 nm by using a BiB3O6 (BiBO) nonlinear crystal.  相似文献   

14.
Based on the rate equation of Nd3+-doped quasi-three-level lasers, a theoretical model of diode-end-pumped continuous-wave 912 nm Nd:GdVO4 laser is presented. Lasing threshold and slope efficiency considering reabsorption effect are calculated and analyzed. It is found that the output performance of 912 nm laser operating at room temperature is influenced remarkably by the reabsorption loss and spatial distribution of the pump beam and laser beam. In experiments, the output power and average slope efficiency of 912 nm laser were investigated under different conditions. After optimization at the parameters of laser medium, working temperature and spatial distribution of the pump beam, up to 16.2 W continuous-wave 912 nm laser output was obtained at incident pump power of 67.0 W, with an average slope efficiency of 41.7%, to the best of our knowledge, this is the highest output power of diode-pumped 912 nm Nd:GdVO4 laser by far.  相似文献   

15.
EBRAHIM SAFARI 《Pramana》2011,76(1):119-125
In this work, we studied the influence of heat loaded into the laser crystal in an end-pumped solid-state Nd:YVO4 high power laser. We have shown experimentally that the optimum value of the laser-diode temperature for the maximum pump power absorption by the Nd:YVO4 crystal and the maximum Nd:YVO4 laser output power are approximately similar to that of a system of the low power type, but by increasing the pump power, different values can be obtained.  相似文献   

16.
A high-efficiency Nd:GdVO4 bounce laser in-band pumped at 879 nm is demonstrated for the first time. From a side-pumped Nd:GdVO4 crystal, 8.2 W output was obtained with 18.5 W absorbed pump power. Corresponding slope efficiency with respect to the absorbed pump power was 51.4%, and the beam quality factor M2 is 1.13 and 1.15 for tangential direction and sagittal direction, respectively. Effects of crystal’s doping concentration and temperature on laser power and conversion efficiency were also investigated.  相似文献   

17.
It is reported that efficient continuous-wave (CW) blue laser generation at 465 nm in a BiB3O6 (BiBO) crystal at type-I phase matching direction performed with a diode-pumped Nd3+:YAlO3 (Nd:YAP) laser. With incident pump power of 18.4 W, output power of 823 mW at 465 nm has been obtained using a 10 mm-long BiBO crystal. At the output power level of 823 mW, the output stability is better than 2.3%.  相似文献   

18.
A diode-pumped Nd3+:YAlO3 (Nd:YAP) laser emitting at 1339 nm is described. At the incident pump power of 17.8 W, as high as 3.4 W of continuous-wave (CW) output power at 1339 nm is achieved. The slope efficiency with respect to the incident pump power was 23.6%. The output power stability over 60 min is better than 3.5%. The laser beam quality M 2 factor is 1.33.  相似文献   

19.
It is reported that efficient continuous-wave (CW) red laser generation at 670 nm in a LBO crystal at type-I phase matching direction performed with a diode-pumped Nd3+:YAlO3 (Nd:YAP) laser. With incident pump power of 15.6 W, output power of 273 mW at 670 nm has been obtained using a 10 mm-long LBO crystal. At the output power level of 273 mW, the output stability is better than 3.7%.  相似文献   

20.
It is reported the efficient compact deep-blue laser at 457 nm generation by intracavity frequency doubling of a continuous wave (CW) laser operation of a diode-pumped YVO4:Nd laser on the 4 F 3/24 I 9/2 transition at 914 nm. An LBO crystal, cut for critical type I phase matching at room temperature is used for second harmonic generation (SHG) of the laser. With dual end pump configurations at total incident pump power of 60 W, as high as 21.8 W of CW output power at 457 nm is achieved with 20-mm-long LBO. The optical-to-optical conversion efficiency is up to 36.3%, and the power stability in 8 h is better than 2.36%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号