首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
One of the major obstacles in employing complex-valued trajectory methods for quantum barrier scattering calculations is the search for isochrones. In this study, complex-valued derivative propagation method trajectories in the arbitrary Lagrangian-Eulerian frame are employed to solve the complex Hamilton-Jacobi equation for quantum barrier scattering problems employing constant velocity trajectories moving along rectilinear paths whose initial points can be in the complex plane or even along the real axis. It is shown that this effectively removes the need for isochrones for barrier transmission problems. Model problems tested include the Eckart, Gaussian, and metastable quadratic+cubic potentials over a variety of wave packet energies. For comparison, the "exact" solution is computed from the time-dependent Schrodinger equation via pseudospectral methods.  相似文献   

2.
The reactive scattering of a wave packet is studied by the quantum trajectory method for a model system with up to 25 Morse vibrational modes. The equations of motion are formulated in curvilinear reaction path coordinates with the restriction to a planar reaction path. Spatial derivatives are evaluated by the least squares method using contracted basis sets. Dynamical results, including trajectory evolution and time-dependent reaction probabilities, are presented and analyzed. For the case of one Morse vibrational mode, the results are in good agreement with those derived through direct numerical integration of the time-dependent Schrodinger equation.  相似文献   

3.
The dynamics of ensembles containing thousands of quantum trajectories are studied for multidimensional systems undergoing reactive scattering. The Hamiltonian and equations of motion are formulated in curvilinear reaction path coordinates, for the case of a planar (zero-torsion) reaction path. In order to enhance the computational efficiency, an improved least squares fitting procedure is introduced. This scheme involves contracted basis sets and the use of inner and outer stencils around points where fitting is performed. This method is applied to reactive systems with 50-200 harmonic vibrational modes which are coupled to motion along the reaction coordinate. Dynamical results, including trajectory evolution and time-dependent reaction probabilities, are presented and power law scaling of computation time with the number of vibrational modes is described.  相似文献   

4.
In this work, a full quantum study of the scattering of He atoms off single CO molecules, adsorbed onto the Pt(111) surface, is presented within the formalism of quantum trajectories provided by Bohmian mechanics. By means of this theory, it is shown that the underlying dynamics is strongly dominated by the existence of a transient vortitial trapping with measurable effects on the whole diffraction pattern. This kind of trapping emphasizes the key role played by quantum vortices in this scattering. Moreover, an analysis of the surface rainbow effect caused by the local corrugation that the CO molecule induces on the surface, and its manifestation in the corresponding intensity pattern, is also presented and discussed.  相似文献   

5.
The quantum Hamilton-Jacobi equation for the action function is approximately solved by propagating individual Lagrangian quantum trajectories in complex-valued phase space. Equations of motion for these trajectories are derived through use of the derivative propagation method (DPM), which leads to a hierarchy of coupled differential equations for the action function and its spatial derivatives along each trajectory. In this study, complex-valued classical trajectories (second order DPM), along which is transported quantum phase information, are used to study low energy barrier transmission for a model two-dimensional system involving either an Eckart or Gaussian barrier along the reaction coordinate coupled to a harmonic oscillator. The arrival time for trajectories to reach the transmitted (product) region is studied. Trajectories launched from an "equal arrival time surface," defined as an isochrone, all reach the real-valued subspace in the transmitted region at the same time. The Rutherford-type diffraction of trajectories around poles in the complex extended Eckart potential energy surface is described. For thin barriers, these poles are close to the real axis and present problems for computing the transmitted density. In contrast, for the Gaussian barrier or the thick Eckart barrier where the poles are further from the real axis, smooth transmitted densities are obtained. Results obtained using higher-order quantum trajectories (third order DPM) are described for both thick and thin barriers, and some issues that arise for thin barriers are examined.  相似文献   

6.
One-dimensional time-independent scattering problems are investigated in the framework of the quantum Hamilton-Jacobi formalism. The equation for the local approximate quantum trajectories near the stagnation point of the quantum momentum function is derived, and the first derivative of the quantum momentum function is related to the local structure of quantum trajectories. Exact complex quantum trajectories are determined for two examples by numerically integrating the equations of motion. For the soft potential step, some particles penetrate into the nonclassical region, and then turn back to the reflection region. For the barrier scattering problem, quantum trajectories may spiral into the attractors or from the repellers in the barrier region. Although the classical potentials extended to complex space show different pole structures for each problem, the quantum potentials present the same second-order pole structure in the reflection region. This paper not only analyzes complex quantum trajectories and the total potentials for these examples but also demonstrates general properties and similar structures of the complex quantum trajectories and the quantum potentials for one-dimensional time-independent scattering problems.  相似文献   

7.
Here in this paper, it is shown how the quantum nonlocality reshapes probability distributions of quantum trajectories in configuration space. By variationally minimizing the ground state energy of helium atom, we show that there exists an optimal nonlocal quantum correlation length which also minimizes the mean integrated square error of the smooth trajectory ensemble with respect to the exact many-body wave function. The nonlocal quantum correlation length can be used for studies of both static and driven many-body quantum systems.  相似文献   

8.
The Caldeira-Leggett master equation, expressed in Lindblad form, has been used in the numerical study of the effect of a thermal environment on the dynamics of the scattering of a wave packet from a repulsive Eckart barrier. The dynamics are studied in terms of phase space trajectories associated with the distribution function, W(q,p,t). The equations of motion for the trajectories include quantum terms that introduce nonlocality into the motion, which imply that an ensemble of correlated trajectories needs to be propagated. However, use of the derivative propagation method (DPM) allows each trajectory to be propagated individually. This is achieved by deriving equations of motion for the partial derivatives of W(q,p,t) that appear in the master equation. The effects of dissipation on the trajectories are studied and results are shown for the transmission probability. On short time scales, decoherence is demonstrated by a swelling of trajectories into momentum space. For a nondissipative system, a comparison is made of the DPM with the "exact" transmission probability calculated from a fixed grid calculation.  相似文献   

9.
10.
Semiclassical trajectory methods are tested for electronically nonadiabatic systems with conical intersections. Five triatomic model systems are presented, and each system features two electronic states that intersect via a seam of conical intersections (CIs). Fully converged, full-dimensional quantum mechanical scattering calculations are carried out for all five systems at energies that allow for electronic de-excitation via the seam of CIs. Several semiclassical trajectory methods are tested against the accurate quantum mechanical results. For four of the five model systems, the diabatic representation is the preferred (most accurate) representation for semiclassical trajectories, as correctly predicted by the Calaveras County criterion. Four surface hopping methods are tested and have overall relative errors of 40%-60%. The semiclassical Ehrenfest method has an overall error of 66%, and the self-consistent decay of mixing (SCDM) and coherent switches with decay of mixing (CSDM) methods are the most accurate methods overall with relative errors of approximately 32%. Furthermore, the CSDM method is less representation dependent than both the SCDM and the surface hopping methods, making it the preferred semiclassical trajectory method. Finally, the behavior of semiclassical trajectories near conical intersections is discussed.  相似文献   

11.
In a previous publication [J. Chem. Phys. 118, 9911 (2003)], the derivative propagation method (DPM) was introduced as a novel numerical scheme for solving the quantum hydrodynamic equations of motion (QHEM) and computing the time evolution of quantum mechanical wave packets. These equations are a set of coupled, nonlinear partial differential equations governing the time evolution of the real-valued functions C and S in the complex action, S=C(r,t) + iS(r,t)/Planck's over 2pi, where Psi(r,t)=exp(S). Past numerical solutions to the QHEM were obtained via ensemble trajectory propagation, where the required first- and second-order spatial derivatives were evaluated using fitting techniques such as moving least squares. In the DPM, however, equations of motion are developed for the derivatives themselves, and a truncated set of these are integrated along quantum trajectories concurrently with the original QHEM equations for C and S. Using the DPM quantum effects can be included at various orders of approximation; no spatial fitting is involved; there is no basis set expansion; and single, uncoupled quantum trajectories can be propagated (in parallel) rather than in correlated ensembles. In this study, the DPM is extended from previous one-dimensional (1D) results to calculate transmission probabilities for 2D and 3D wave packet evolution on coupled Eckart barrier/harmonic oscillator surfaces. In the 2D problem, the DPM results are compared to standard numerical integration of the time-dependent Schrodinger equation. Also in this study, the practicality of implementing the DPM for systems with many more degrees of freedom is discussed.  相似文献   

12.
13.
Qiang Ma 《Talanta》2010,82(1):51-8559
A sensitive QDs-based RLS assay method for the detection of Newcastle disease virus (NDV) antibody has been developed. CdTe quantum dots (QDs) were conjugated with Newcastle disease virus and used as RLS-based probes to detect NDV antibody. The electrostatic interaction between CdTe QDs and NDV resulted in enhanced resonance light scattering (RLS) signal characterized at 555 nm. Upon the addition of NDV antibody, QDs-NDV formed dispersive immunocomplex that can decrease the RLS signal. The decreased RLS intensity at 555 nm (ΔIRLS) was linearly proportional to the concentration of NDV antibody (Canti-NDV) in the range of 0.5-50 ng/mL, with correlation coefficient of 0.974 and detection limit of 0.1 ng/mL under the optimization conditions. The proposed method was applied to the determination of NDV antibody in spiked samples with satisfactory results.  相似文献   

14.
The elastic resonant scattering of He atoms off the Cu(117) surface is fully described with the formalism of quantum trajectories provided by Bohmian mechanics. Within this theory of quantum motion, the concept of trapping is widely studied and discussed. Classically, atoms undergo impulsive collisions with the surface, and then the trapped motion takes place covering at least two consecutive unit cells. However, from a Bohmian viewpoint, atom trajectories can smoothly adjust to the equipotential energy surface profile in a sort of sliding motion; thus the trapping process could eventually occur within one single unit cell. In particular, both threshold and selective adsorption resonances are explained by means of this quantum trapping considering different space and time scales. Furthermore, a mapping between each region of the (initial) incoming plane wave and the different parts of the diffraction and resonance patterns can be easily established, an important issue only provided by a quantum trajectory formalism.  相似文献   

15.
16.
Recent experimental results from ultra-small-angle neutron and X-ray scattering (USANS and USAXS) studies of complex fluids, including colloidal dispersions, colloidal glasses, polymer blends, and biopolymer gels, are reviewed. We focus on data analysis and interpretation in the low q regime. New notable results include the apparent existence of large-scale structure in attractive colloidal glasses, the discovery of new morphological transitions in polymer blends via USANS, and the detection of micron-scale water channels in biopolymer gels.  相似文献   

17.
One-colour polarization spectroscopy (PS) on the OH A (2)Sigma(+)- X (2)Pi(0,0) band has been used to measure the removal of bulk rotational angular momentum alignment of ground-state OH(X (2)Pi) in collisions with He and Ar. Pseudo-first-order PS signal decays at different collider partial pressures were used to determine second-order decay rate constants for the X (2)Pi(3/2), J = 1.5-6.5, e states. The PS signal decay rate constant, k(PS), is sensitive to all processes that remove population and destroy polarization. The contribution to k(PS) from pure (elastic) alignment depolarization within the initial level, k(DEP), can be extracted by subtracting the independently measured or predicted sum of the rate constants for total rotational energy transfer (RET), k(RET), and for Lambda-doublet changing, k(Lambda), collisions from k(PS). Literature values of k(RET) and k(Lambda) are available from experiments with He and Ar, and from quantum scattering calculations for Ar only. We therefore also present the results of new, exact, fully quantum mechanical calculations of k(RET) and k(Lambda) on the most recent ab initio OH(X)-He potential energy surface of Lee et al. [J. Chem. Phys. 2000, 113, 5736]. The results for k(DEP) from this subtraction for He are found to be modest, around 0.4 x 10(-10) cm(3) s(-1), whereas for Ar k(DEP) is found to range between 0.6 +/- 0.2 x 10(-10) cm(3) s(-1) and 1.7 +/- 0.3 x 10(-10) cm(3) s(-1), comparable to total population removal rate constants. The differences between k(DEP) for the two colliders are most likely explained by the presence of a substantially deeper attractive well for Ar than for He. The measurement of k(DEP) may provide a useful new tool that is more sensitive to the form of the long-range part of the intermolecular potential than rotational state-changing collisions.  相似文献   

18.
We recently interpreted several reactive scattering experiments using a plane wave packet (PWP) formulation of quantum scattering theory [see, e.g., S. C. Althorpe, F. Fernandez-Alonso, B. D. Bean, J. D. Ayers, A. E. Pomerantz, R. N. Zare, and E. Wrede, Nature (London) 416, 67 (2002)]. This paper presents the first derivation of this formulation for atom-plus-diatom reactive scattering, and explains its relation to conventional time-independent reactive scattering. We generalize recent results for spherical-particle scattering [S. C. Althorpe, Phys. Rev. A 69, 042702 (2004)] to atom-rigid-rotor scattering in the space-fixed frame, atom-rigid-rotor scattering in the body-fixed frame, and finally A+BC rearrangement scattering. The reactive scattering is initiated by a plane wave packet, describing the A+BC reagents in center-of-mass scattering coordinates, and is detected by projecting onto a series of AC+B (or AB+C) plane wave "probe" packets. The plane wave packets are localized at the closest distance from the scattering center at which the interaction potential can be neglected. The time evolution of the initial plane wave packet provides a clear visualization of the scattering into space of the reaction products. The projection onto the probe packets yields the time-independent, state-to-state scattering amplitude, and hence the differential cross section. We explain how best to implement the PWP approach in a numerical computation, and illustrate this with a detailed application to the H+D2 reaction.  相似文献   

19.
 In this overview I discuss recent advances as well as outstanding issues in reduced dimensionality quantum approaches to reactive scattering. “Reduced dimensionality” in the present context signifies treating a subset of all degrees of freedom (the most strongly coupled ones) by rigorous quantum methods and treating the remaining (weakly coupled) degrees of freedom by a variety of approximate methods, ranging from simple, so-called energy shifts to more elaborate adiabatic treatments. The most widely used example of this approach is termed “J-shifting”, and this overview will concentrate on this method and discuss its application and generalization to both “direct” and “complex” reactions, exemplified by O(3P) + HCl and O(1D) + HCl, respectively. In addition, for O(3P) + HCl, resonances in the tunneling region, due to van der Waals wells, are discussed and their challenge to reduced dimensionality methods is stressed. Another new aspect of the reduced dimensionality treatment of polyatomic reactions is the need to describe anharmonicity in a consistent fashion. This is exemplified by the H + CH4 reaction. Received: 3 February 2002 / Accepted: 8 April 2002 / Published online: 19 August 2002  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号