首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High pressure optical absorption spectra are presented for CdSe nanocrystals as a function of size. The spectra show a transition to a high pressure Rock Salt type phase at pressure greatly elevated from the bulk. The size dependence of the transition pressure can be explained in part by an increased surface tension in the Rock Salt phase relative to the low pressure tetrahedral phase.  相似文献   

2.
The nature of the β to α phase transition in silver iodide was investigated by conventional and modulated temperature DSC and dielectric property measurements. On cooling, the high temperature phase remained stable 2.5°C below its normal transition temperature even at a very slow cooling rate 0.2°C h–1. Dielectric property measurements under conventional and microwave heating suggested an anomalous effect of the latter on the β to α phase transition in this material.  相似文献   

3.
Nanocrystals in the size range 12-21 nm of a model binary ionic material in the wurtzite (B4) structure were constructed with morphologies which minimize the surface energy. These were then embedded in a pressurization medium, consisting of a binary Lennard-Jones-type fluid and progressively pressurized in "constant pressure" molecular dynamics simulation runs. Phase transitions to the rocksalt (B1) phase were confirmed by examining calculated powder diffraction patterns, which show the same changes in features as seen for experimental systems. By directly observing the atomic trajectories throughout the duration of the transition the local mechanism has been identified. The transition proceeds via a trigonal bipyramidal intermediate, denoted as the h-MgO structure. It is initiated by a single nucleation event at a [1120]B4 surface with subsequent growth of the B1 region throughout the remainder of the nanocrystal. The consequences of this mechanism for the particle shape of the product phase are detailed and contrasted with those previously found for initially zincblende (B3) structured nanoparticles, using the same interaction potential. The observed transition pressures are elevated relative to the thermodynamically predicted pressure for the bulk, but there is no observable system size effect on the transition pressure across the size range of nanocrystals investigated.  相似文献   

4.
Electron paramagnetic resonance (EPR) of two intrinsic paramagnetic centers generated by soft mechanochemistry of Ag and I to yield zinc blende gamma-AgI nanoparticles (approximately 38 nm) has been used for the first time to probe the gamma-alpha (body centered cubic) superionic phase transitions in AgI at (423 +/- 1) K. These results are agreeable with the differential scanning calorimetric studies. A transmission electron microscope picture shows the average crystallite size in the range of approximately 30-40 nm. A hole-type Ag-related paramagnetic center (Ag2+) with an average g = 2.21025 value is remarkably sensitive to the first-order phase transition exhibiting sharp drops at the phase transition temperature (T(t)) and complete reversibility. The T(t) is characterized by a sharp, abrupt rise in the inverse paramagnetic susceptibility 1/chi by 1 order (7.4 x 10(10) to 3.17 x 10(11) in kg m(-3)) which reflects changes in the bonding of the material. Furthermore, a sharp signal at g = 2.0019 (deltaH(PP) = 10 G) due to an electron-excess center (Ag0) as a result of Ag metal nanoclusters also formed during the mechanochemical reaction (MCR) yields an abrupt and drastic decrease in the intensity observed at T(t) = 423 K. From high-temperature (323 to 433 K) I-V characteristics, the evolution of nonohmic behavior is observed on the order of 10(-9)-10(-6) A with increasing temperature until below T(t) which becomes ohmic thereafter. The reason could be the creation of an electronic defect such as Ag0 metal nanoclusters formed during the near-equilibrium mechanochemical reaction, with the increased excess free energy favoring the formation of gamma-AgI nanoparticles.  相似文献   

5.
A general, one-pot, single-step method for producing colloidal silver chalcogenide (Ag(2)E; E = Se, S, Te) nanocrystals is presented, with an emphasis on Ag(2)Se. The method avoids exotic chemicals, high temperatures, and high pressures and requires only a few minutes of reaction time. While Ag(2)S and Ag(2)Te are formed in their low-temperature monoclinic phases, Ag(2)Se is obtained in a metastable tetragonal phase not observed in the bulk.  相似文献   

6.
We prepare Ag(2)Se nanocrystals with average diameters between 2.7 and 10.4 nm that exhibit narrow optical absorption features in the near to mid infrared. We demonstrate that these features are broadly tunable due to quantum confinement. They provide the longest wavelength absorption peaks (6.5 μm) yet reported for colloidal nanocrystals.  相似文献   

7.
Lead chalcogenide (PbS, PbSe, and PbTe) nanocrystals were synthesized by sequential implantation of Pb and one of the chalcogen species into pure silica. The implantation energy and fluence were chosen so that the implantation profiles practically overlap at a depth approximately 150 nm with a maximum concentration of about 0.3 atom %. Annealing for 1-8 h at 850-900 degrees C triggers nanocrystal growth, which is monitored by high-resolution (HRTEM) and conventional transmission electron microscopy (TEM), secondary-ion mass spectrometry (SIMS), and Rutherford backscattering spectrometry (RBS). Striking differences are found in the depth distributions and microstructures of the resulting nanocrystals. We show that the differing chemical interactions of Pb and chalcogens (between each other and with silica) play a crucial role in chalcogenide nucleation and growth. Using available information on chalcogen redox states in silicate glass, we propose a nonclassical nucleation and growth mechanism consistent with our experimental results. The complex chemistry involved at the microscopic level is shown to impair control over the nanocrystal size distribution. Finally, PbS nanocrystal-doped silica is shown to emit intense photoluminescence (PL) in the 1.5-2 microm wavelength range, an effect that we relate to the above nucleation and growth scheme.  相似文献   

8.
The specifics of the synthesis of silver halide nanocrystals of mixed composition and the core-shell structures in reversed micelles were experimentally studied. It was shown that homogeneous AgBr x I1 ? x nanocrystals of ~5 nm in size with the iodide concentration up to 70%, as well as the core-shell structures AgI/AgBr and AgBr/AgI, can be synthesized by the micellar synthesis. It was found that the relation of the crystalline structures of the core and shell materials plays an important role in the shell formation. The shell of γ-AgI alone is formed on the AgBr nanocrystals with a close lattice type, whereas β-AgI with the hexagonal lattice forms an individual phase of nanoparticles, rather than the shell.  相似文献   

9.
Preparation of silver nanocrystals in the presence of aniline   总被引:7,自引:0,他引:7  
The preparation and characterization of silver nanocrystals by chemical reduction of silver ions in the presence of aniline using hydrazine monohydrate (N(2)H(4).H(2)O) or sodium citrate as the reducing agent are described. A high yield of aniline-derivatized hexagonal silver nanoparticles is obtained by the reduction of Ag(2)SO(4) with N(2)H(4).H(2)O. An alternative strategy is the reduction of Ag(+) by citrate in the presence of aniline, by which the size and morphology of the Ag nanocrystals can be controlled to a certain degree by changing the concentration ratio of aniline to Ag(+). It is believed that the amount of aniline added in the starting solutions for the preparation influences the morphology of the Ag nanoparticles. In addition, the long Ag nanorods with a high mean aspect ratio are prepared in the presence of aniline at a low concentration or o-anisidine.  相似文献   

10.
We have found that the shape of silver nanocrystals is conveniently controlled by injection of oxygen gas during the polyol reduction of silver ions. The presence of oxygen effectively promotes the oxidative etching of multiple twined particles. Adjusting the flow rate of the oxygen gas yields uniformly-sized silver nanocubes, right bipyramids, nanowires, and spherical nanoparticles depending on the injection rate of the oxygen gas. Electron diffraction and high resolution TEM observations of the synthesized nanocrystals show our nanocrystals do consist of silver, not of silver oxide. SERS activities of the synthesized nanocrystals were also examined.  相似文献   

11.
Nearly monodisperse lead chalcogenide (PbE, E = S, Se, or Te) semiconductor quantum dots of controllable shape have been produced via a novel synthesis which includes the occurrence of in situ formed Pb(0) particles. Tunable size and shape are achieved through appropriate choice of the precursor type and the stabilizer. As precursor, we use, on the one hand, lead oxide or lead acetate, on the other hand, tellurium, selenium, or sulfur powder dissolved in trioctylphosphine (TOP), tributylphosphine (TBP), or 1-octadecene (ODE). Oleic acid (OA) and various amines, as well as TOP and TBP are used for stabilization. With respect to possible application in hybrid solar cells, the surface of as-synthesized spherical PbSe nanocrystals was investigated by nuclear magnetic resonance (NMR), mass spectrometry (MS) and thermogravimetric analysis (TGA). As an important result, it was found that the surface is not mostly covered by oleic acid after synthesis, but by a phosphorus compound. We also applied a ligand exchange procedure with hexylamine and found evidence for the successful attachment of hexylamine to the nanocrystal surface. Additionally, charge separation between these nanoparticles and the conjugated polymer poly(3-hexylthiophene) (P3HT) is studied by electron spin resonance and photoinduced absorption spectroscopy. The spectra obtained suggest that charges can be produced successfully by photoinduced charge transfer.  相似文献   

12.
Silver colloids of well-defined shape, size were synthesized by γ-ray irradiating silver salt in reversed microemulsions, and then pure silver dry powders were obtained. The sols were studied by absorption spectroscopy, and the silver powders were characterized by Transmission Electron Micrographs (TEM) and X-ray Diffraction (XRD). The effect of radiation dose and aging time was discussed.  相似文献   

13.
Silver nanocrystals with tetrahedral shapes and {111} faces have been synthesized by the light-driven growth method in an aqueous solution. The nanocrystals of T(d) symmetry were formed under the effect of tartrate and citrate as the structural-directing reagents at the appropriate stages of reaction. Further, the nanocrystals may be assembled through electrostatic interaction to develop large-scale particle surfaces with sharp vertexes, which can generate strong localized electromagnetic field for surface-enhanced Raman scattering (SERS) studies. Benzenethiol was used as the probe to evaluate their SERS enhancement, and enhancement factors of up to 10(6) are reached. As a kind of promising material, these novel nanocrystals will be applied in surface enhanced spectroscopy and plasmonics field.  相似文献   

14.
We present the calculations of the electronic structure and transport properties on the zinc-blende (ZB) and cinnabar phases of HgTe using the full-potential linearized augmented plane-wave method and the semiclassical Boltzmann theory. Our results show that n-doped cinnabar HgTe has a significant larger Seebeck coefficient and electrical conductivity along the z axis than those of the n-doped ZB phase. This is mainly attributed to the large structural anisotropy originated from its chainlike bonding characters along the z axis, resulting in the anisotropic energy distribution in the lowest conduction band of cinnabar structure. The resulting ZT values along the z axis of the n-doped cinnabar HgTe are predicted to reach very high values of 0.61 at room temperature and 1.74 at 600 K. Therefore, the current theory suggests that the cinnabar structure of HgTe could be a good thermoelectric material. Future experiments are thus demanded to explore its thermoelectric performance by making use of the high ZT.  相似文献   

15.
A significant enhancement of thermoelectric performance in layered oxyselenides BiCuSeO was achieved. The electrical conductivity and Seebeck coefficient of BiCu(1-x)SeO (x = 0-0.1) indicate that the carriers were introduced in the (Cu(2)Se(2))(2-) layer by Cu deficiencies. The maximum of electrical conductivity is 3 × 10(3) S m(-1) for Bicu(0.975)Seo at 650 °C, much larger than 470 S m(-1) for pristine BiCuSeO. Featured with very low thermal conductivity (~0.5 W m(-1) K(-1)) and a large Seebeck coefficient (+273 μV K(-1)), ZT at 650 °C is significantly increased from 0.50 for pristine BiCuSeO to 0.81 for BiCu(0.975)SeO by introducing Cu deficiencies, which makes it a promising candidate for medium temperature thermoelectric applications.  相似文献   

16.
17.
The pyndazine hexafluorophosphate[C4H5N2]+[PF6]-(1) undergoes a reversible phase transition around140 K,which was confirmed by the DSC measurement.Variable-temperature crystal structures determined at 293 K and 93 K show that the compound crystallizes in the same space group P21/c,indicating that 1 undergoes an iso-structural phase transition.As the temperature decreases,dielectric measurement of the title compound shows no significant change around the phase transition temperature.Classic hydrogen bonds are found between molecules at 293 K and 93 l< with similar packing arrangement.The most distinct difference between the low temperature and room temperature structures is the order-disorder transition of the hexafluorophosphate anion,which is probably the driving force of the phase transition.  相似文献   

18.
Luminescence effect of silver nanoparticle in water phase   总被引:4,自引:0,他引:4  
Yellow silver nanoparticles in water phase were prepared by microwave synthesis method. Study found that there is a fluorescence peak at 465 nm and a strongest resonance scattering peak at 460 nm for the nanoparticles. The resonance scattering intensity at 465 nm I(460 nm). fluorescence intensity at 465 nm F(465)(nm) and absorbance at 455 nm A(455 nm) were found linear to the concentration c(Ag) in the range from 0 to 3.5x10(-4)mol/L Ag, with linear regression equation for I(460 nm)=48.1x10(4) c(Ag)+3.69 and F(465 nm)=28.7x10(4)c(Ag)+3.50 and A(455 nm)1.23x10(4)c(Ag)+0.01, their regression coefficient for 0.9976, 0.9954 and 0.9957, respectively. When the c(Ag) was over 3.5x10(-4)mol/L, the resonance scattering peak and fluorescence peak of 465 nm take place red-shift and display luminescence quenching, but the absorption peak place does not change and the absorption intensity enhances. The paper reports the spectral properties of silver nanoparticles in water phase, and offers the principle of interface luminescence electron to state the luminescence effect of silver nanoparticles.  相似文献   

19.
The ordering of silver nanocrystals is tuned from amorphous aggregates to highly well-ordered, face-centered cubic supra-crystals, using various substrates and controlling their temperature to obtain this. Low-frequency Raman scattering, for the first time, demonstrates vibrational coherence in fcc supra-crystals of nanocrystals. This is shown by a narrowing of the peak corresponding to the quadrupolar modes of the nanocrystals. However, this is obtained when the supra-crystals are smaller than the excitation wavelength. When the supra-crystals are larger, the narrowing cannot be observed. Furthermore, for any size of the supra-crystals, a shift to low frequency of the Raman peak due to the Lorentz field effect is seen.  相似文献   

20.
An outstanding compression function for materials preparation exhibited by nanospaces of single-walled carbon nanohorns (SWCNHs) was studied using the B1-to-B2 solid phase transition of KI crystals at 1.9 GPa. High-resolution transmission electron microscopy and synchrotron X-ray diffraction examinations provided evidence that KI nanocrystals doped in the nanotube spaces of SWCNHs at pressures below 0.1 MPa had the super-high-pressure B2 phase structure, which is induced at pressures above 1.9 GPa in bulk KI crystals. This finding of the supercompression function of the carbon nanotubular spaces can lead to the development of a new compression-free route to precious materials whose syntheses require the application of high pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号