首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A general strategy for simultaneously generating surface‐based supramolecular architectures on flat sp2‐hybridized carbon supports and independently exposing on demand off‐plane functionality with controlled lateral order is highly desirable for the noncovalent functionalization of graphene. Here, we address this issue by providing a versatile molecular platform based on a library of new 3D Janus tectons that form surface‐confined supramolecular adlayers in which it is possible to simultaneously steer the 2D self‐assembly on flat C(sp2)‐based substrates and tailor the external interface above the substrate by exposure to a wide variety of small terminal chemical groups and functional moieties. This approach is validated throughout by scanning tunneling microscopy (STM) at the liquid–solid interface and molecular mechanics modeling studies. The successful self‐assembly on graphene, together with the possibility to transfer the graphene monolayer onto various substrates, should considerably extend the application of our functionalization strategy.  相似文献   

2.
In this Article, we report on the assembly of hybrid Au@PNIPAM core-shell particles at the air/water interface, their transfer onto solid substrates, and the controlled combustion of the organic material to produce arrays of gold nanoparticles. A detailed investigation on the assembly behavior of such soft hybrid colloids at the air/water interface was performed by correlating the surface pressure-area isotherms with SEM and AFM images from samples transferred at different surface pressures. The hybrid particles display a complex behavior at the interface, and we could distinguish three distinct phases with varying interparticle spacings at different compression. The transfer process presented enables the decoration of topologically structured substrates with gold nanoparticle arrays, and the order of the initial monolayers is retained in the arrays of inorganic gold nanoparticles. The change in monolayer morphology upon compression can therefore be used to tailor the interparticle distance between approximately 650 and 300 nm without exchanging the colloids. More sophisticated gold nanostructures can be patterned into symmetric arrays using a similar protocol, which we demonstrate for nanostars and nanorods.  相似文献   

3.
Asymmetric dimers consisting of gold microcrystals and spherical silica colloids have been fabricated by depositing thin films of gold onto the spherical colloids to form half-shells, followed by annealing at elevated temperatures. The capability and feasibility of this procedure have been demonstrated with silica and titania beads of 0.2-2 mum in diameter and gamma-Fe2O3/polystyrene@SiO2 core-shell particles 0.5 mum in size. The dimensions of gold microcrystals could be conveniently varied in the range of 100-650 nm by controlling the thickness of gold films and/or the diameter of the spherical colloids. This method provides another route to asymmetric dimers made of colloidal particles that could be different in size, chemical composition, surface functionality, density or sign of surface charge, bulk property, or a combination of these properties.  相似文献   

4.
Methods for functionalizing micrometer-sized colloidal spheres with three or more zones of chemical functionality (ABA or ABC) are described. To produce ABA triblock colloids, we functionalized the north pole, south pole, and equator to produce what we call X, Y, and K functionality according to the number of allowed nearest neighbors and their spatial arrangements. These synthesis methods allowed targeting of various lattice structures whose bonding between neighboring particles in liquid suspension was visualized in situ by optical microscopy.  相似文献   

5.
DNA-mediated interactions present a significant opportunity for controlling colloidal self-assembly. Using microcontact printing to achieve spatial control of DNA-surface patterning and DNA-functionalized polystyrene colloids, we report that DNA hybridization can be utilized for sequence-specific reversible self-assembly of well-ordered 2D colloidal arrays. Two essential indicators of DNA-hybridization mediated assembly were confirmed: thermal reversibility and sequence specificity. The arrays melted at 50 degrees C and reassembled when introduced to fresh colloid suspension, and sequence specificity with <1% nonspecific binding was confirmed using fluorescent polystyrene colloids. The real-time assembly of the colloids onto the periodically patterned substrate was monitored by simple laser diffraction to obtain assembly kinetics. Maximum surface coverage of DNA-mediated assembly was determined to be 0.593 for DNA-functionalized 100 nm polystyrene colloids, and 90% of the assembly was complete after 6.25 h of hybridization in 50 mM NaCl Tris buffer. We also demonstrate that DNAzymes, catalytic DNA molecules, can be incorporated into the design, and in the presence of 10 microM Pb(2+), the hybridization-induced array assembly can be disrupted via DNAzyme activity.  相似文献   

6.
Chemical bath deposition synthesis of sub-micron ZnS-coated polystyrene   总被引:1,自引:0,他引:1  
The synthesis of ZnS-coated polystyrene composite colloids by the decomposition of thioacetamide in the presence of polystyrene seed particles and metal salt is presented. The chemical bath deposition technique incorporates poly(vinyl pyrrolidone) to inhibit particle aggregation during the synthesis so that core-shell particles with sizes in the low sub-micron range were achieved. The shell thickness was well controlled through the reaction time and core size. ZnS shells were composed of primary crystallites, approximately 5 nm in diameter, which had the zinc blend crystal structure. The porosity of the shells was between 12 and 19%. Accordingly, the effective refractive index of the particles varied between 1.73 and 1.98 at wavelengths above the optical absorption edge of ZnS. Ordered colloidal crystals were produced by convective assembly of the poly(sodium 4-styrenesulfonate) stabilized core-shell particles. Assemblies of ZnS shell-polystyrene core particles are photonic crystal materials which may have applications in optical computing and communications environments.  相似文献   

7.
Trends and past achievements in the field of food colloids are reviewed. Specific mention is made of advances in knowledge and understanding in the areas of (i) structure and rheology of protein gels, (ii) properties of adsorbed protein layers, (iii) functionality derived from protein–polysaccharide interactions, and (iv) oral processing of food colloids. Amongst ongoing experimental developments, the technique of particle tracking for monitoring local dynamics and microrheology of food colloids is highlighted. The future outlook offers exciting challenges with expected continued growth in research into digestion processes, encapsulation, controlled delivery, and nanoscience.  相似文献   

8.
We present a new method for creating surface chemical patterns where three chemistries can be periodically arranged at alternate positions on a single substrate without the use of top‐down approaches. High‐resolution chemical imaging by time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS), with nanometer spatial resolution, is used to prove the success of the patterning and subsequent chemical modification steps. We use a combination of colloidal self‐assembly, plasma etching, self‐assembled monolayers (SAMs) and physical vapour deposition (PVD). The method utilizes a double colloid assembly process in which a first layer of close‐packed colloids is created, followed by plasma etching, coating with gold and deposition of a first SAM layer. A second particle layer is deposited on top of the first layer masking the interstitial spaces containing the first SAM. A second gold layer is deposited followed by a second SAM. After particle removal the surface consists of the pattern containing two different SAMs and a SiO2 layer that can be readily functionalized with silanes. The possibility in the replacement of the two different thiols is investigated by X‐ray photoelectron spectroscopy (XPS) and it was found that no replacement is taking place. ToF‐SIMS imaging is used to show the periodicity of the chemical patterns by tracking unique fragment ions from the different surface regions. The patterning method is adaptable to create smaller or larger chemical patterns by appropriate choice of particle sizes. The patterns are useful for immobilizing biomolecules for cell studies or as multiplexed biosensors.  相似文献   

9.
10.
The assembly and direct imaging of ferromagnetic nanoparticles into one-dimensional mesostructures (1-D) are reported. Polymer-coated ferromagnetic colloids (19 nm, 24 nm) were assembled at a crosslinkable oil-water interface under both magnetic field induced and zero-field conditions and permanently fixed into 1-D mesoscopic polymer chains (1-9 mum) in a process referred to as Fossilized Liquid Assembly (FLA). In the FLA process, nanoparticle chains were fixed at the oil interface through photopolymerization, enabling direct visualization of organized mesostructures using atomic force microscopy. Using the FLA methodology, we systematically investigated different conditions and demonstrated that dispersed ferromagnetic colloids possess sufficient dipolar interactions to organize into mesoscopic assemblies. Application of an external magnetic field during assembly enabled the formation of micron-sized chains which were aligned in the direction of the applied field. This universal methodology is an attractive alternative technique to cryogenic transmission electron microscopy (cryo-TEM) for the visualization of nanoparticle assembly in dispersed organic media.  相似文献   

11.
To date, it has not been possible to combine the high optical quality of silver particles with the good chemical stability and synthetic convenience in a fully aqueous system, while simultaneously allowing chemical surface functionalization. We present a synthetic pathway for future developments in information, energy and medical technology where strong optical/electronic properties are crucial. Therefore, the advantages inherent to gold are fused with the plasmonic properties of silver in a fully aqueous Au/Ag/Au core–shell shell system. These nanoparticles inherit low dispersity from their masked gold cores, yet simultaneously exhibit the strong plasmonic properties of silver. Protecting the silver surface with a thin gold layer enables oxidant stability and functionality without altering the Ag‐controlled optical properties. This combines both worlds—optical quality and chemical stability—and is not limited to a specific particle shape.  相似文献   

12.
We report a novel strategy on the controlled assembly of gold nanoparticles (NPs) at the air-water interface by designing a concentration gradient of electrolytes utilizing volatile weak acidic electrolytes. Films of close-packed Au NPs can be facilely obtained by exposing citrate-protected gold colloids to the vapor of formic acid for several hours in an airtight desiccator at room temperature. Both the higher interfacial concentration of formic acid and the buffer effect of citrate solution play the key roles in the assembly. They engender a gradient distribution of hydrogen ions such that to trigger the interfacial assembly of gold NPs while preventing the bulk colloid from aggregation and coagulation. Comparative investigations have also been performed either using other volatile electrolytes like weaker acetic acid and stronger hydrochloric acid or adding an electrolyte directly into the colloids. The as-prepared films of gold NPs can serve as good substrates for surface-enhanced Raman scattering (SERS). This strategy has also been applied to the assembly of some other NPs like colloidal Pt at the air-water interface.  相似文献   

13.
Solution‐, melt‐, and co‐axial electrospinning are well‐known methods for producing nano‐ and microfibers. The electrospinning of colloids (or colloid‐electrospinning) is a new field that offers the possibility to elaborate multicompartment nanomaterials. However, the presence of colloids in the electrospinning feed further complicates theoretical predictions in a system that is dependent on chemical, physical, and process parameters. Herein, we give a summary of recent important results and discuss the perspectives of electrospinning of colloids for the synthesis and characterization of multicompartment fibers.  相似文献   

14.
Synthetic asymmetrical systems, Janus particles and patchy particles, are capable of undergoing hierarchical assembly processes that mimic those of Nature, to serve as switchable devices, optical probes, phase-transfer catalysts, and multifunctional drug carriers, each of which benefits from opposing surface patterns that behave differently. Production of nanometer-sized Janus particles that are equipped with efficient chemistries remains a challenge. A robust Janus-faced polymer nanoparticle framework that presents two orthogonally click-reactive surface chemistries has been generated by a recyclable strategy that involves reactive functional group transfer by templating against gold nanoparticle substrates. This anisotropic functionalization approach is compatible with a wide range of soft materials, providing Janus nanoparticles for the construction of dual-functionalized devices by accurately controlling chemical functionality at the nanoscopic level.  相似文献   

15.
Controlling the assembly of the nanoparticles is important because the optical properties of noble metal nanoparticles, such as the surface plasmon resonance (SPR) and surface-enhanced Raman scattering (SERS), are critically dependent on interparticle distances. Among many approaches available, light-induced disassembly is particularly attractive because it enables spatial modification of the optical properties of nanoparticle assemblies. In this study, we prepare gold nanoparticle (AuNP) aggregates in a gel matrix. Irradiation of the gelated AuNP aggregates at 532 nm leads to the disassembly of the aggregates, changing the color (SPR) from dark blue to red and extinguishing the SERS signal along the irradiated pattern, which opens the possibility of facile fabrication of spatially controlled SERS-generating microstructures. The photoinduced disassembly of the AuNP aggregates in solution is also investigated using UV-vis spectroscopy and transmission electron microscopy.  相似文献   

16.
Structural properties of opals grown with vertical controlled drying   总被引:1,自引:0,他引:1  
We have grown thin opals of self-assembled silica colloids by the well-known vertically controlled drying method. The volume fraction at the start of the growth and the temperature were systematically varied. We have quantitatively characterized the lateral domain sizes by scanning electron microscopy. The sample thickness as a function of position was obtained from Fabry-Pérot fringes measured in optical reflectivity. We observe that the sample thickness strongly increases from top to bottom, independent of temperature, in agreement with a model that we propose. The inhomogeneity in thickness contrasts with earlier reports. The lateral domain shapes of the single-crystal domains are found to vary from irregular near the top to rectangular near the bottom. A surprising observation is that, grosso modo, the lateral domain extents increase linearly with thickness (i.e., thin crystals are small, and thick crystals are large). This behavior agrees qualitatively with results on completely different colloids such as disordered slurries. The consequence of our results for optical applications, including photonic crystals, is that unwanted scattering due to grain boundaries is reduced for large domains that are thick. Conversely, thin crystals will scatter relatively strongly from grain boundaries.  相似文献   

17.
We have measured the influence of both applied alternating current (AC) field strength and frequency on the electrohydrodynamic (EH) flows present in colloidal systems near an electrode surface. The effect of the flows is visualized by the rotation of the colloids, fluorescently labeled by a novel technique involving EH-driven aggregation of much smaller tracer colloids to the surface of the larger colloids. Our results show an E2 dependence of these flows, consistent with an induced charge mechanism for effective colloidal interactions. We have also observed a crossover in frequency that suggests a change in the origin of the induced charge, consistent with predictions from available theory. The EH flows appear to be hydrodynamically screened inside clusters, as evidenced by the lack of rotation of interior colloids and the cluster-size independent rotation rate of colloids on the boundary.  相似文献   

18.
Perovskite nanocrystals (NCs) have revolutionized optoelectronic devices because of their versatile optical properties. However, controlling and extending these functionalities often requires a light‐management strategy involving additional processing steps. Herein, we introduce a simple approach to shape perovskite nanocrystals (NC) into photonic architectures that provide light management by directly shaping the active material. Pre‐patterned polydimethylsiloxane (PDMS) templates are used for the template‐induced self‐assembly of 10 nm CsPbBr3 perovskite NC colloids into large area (1 cm2) 2D photonic crystals with tunable lattice spacing, ranging from 400 nm up to several microns. The photonic crystal arrangement facilitates efficient light coupling to the nanocrystal layer, thereby increasing the electric field intensity within the perovskite film. As a result, CsPbBr3 2D photonic crystals show amplified spontaneous emission (ASE) under lower optical excitation fluences in the near‐IR, in contrast to equivalent flat NC films prepared using the same colloidal ink. This improvement is attributed to the enhanced multi‐photon absorption caused by light trapping in the photonic crystal.  相似文献   

19.
This paper demonstrates a novel facile method for fabrication of patterned arrays of gold nanoparticles on Si/SiO2 by combining electron beam lithography and self-assembly techniques. Our strategy is to use direct-write electron beam patterning to convert nitro functionality in self-assembled monolayers of 3-(4-nitrophenoxy)-propyltrimethoxysilane to amino functionality, forming chemically well-defined surface architectures on the 100 nm scale. These nanopatterns are employed to guide the assembly of citrate-passivated gold nanoparticles according to their different affinities for amino and nitro groups. This kind of nanoparticle assembly offers an attractive new option for nanoparticle patterning a silicon surface, as relevant, for example, to biosensors, electronics, and optical devices.  相似文献   

20.
We consider a theoretical model for a binary mixture of colloidal particles and spherical emulsion droplets. The hard sphere colloids interact via additional short-ranged attraction and long-ranged repulsion. The droplet-colloid interaction is an attractive well at the droplet surface, which induces the Pickering effect. The droplet-droplet interaction is a hard-core interaction. The droplets shrink in time, which models the evaporation of the dispersed (oil) phase, and we use Monte Carlo simulations for the dynamics. In the experiments, polystyrene particles were assembled using toluene droplets as templates. The arrangement of the particles on the surface of the droplets was analyzed with cryogenic field emission scanning electron microscopy. Before evaporation of the oil, the particle distribution on the droplet surface was found to be disordered in experiments, and the simulations reproduce this effect. After complete evaporation, ordered colloidal clusters are formed that are stable against thermal fluctuations. Both in the simulations and with field emission scanning electron microscopy, we find stable packings that range from doublets, triplets, and tetrahedra to complex polyhedra of colloids. The simulated cluster structures and size distribution agree well with the experimental results. We also simulate hierarchical assembly in a mixture of tetrahedral clusters and droplets, and find supercluster structures with morphologies that are more complex than those of clusters of single particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号