首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Compounds of the type M(2)Bz(3) (Bz = benzene, C(6)H(6)) have been of interest since the related triple-decker mesitylenechromium sandwich (1,3,5-Me(3)C(6)H(3))(3)Cr(2) has been synthesized and characterized structurally by X-ray crystallography. Theoretical studies predict the lowest-energy M(2)Bz(3) structures of the early transition metals Ti, V, and Cr to be the triple-decker sandwiches trans-Bz(2)M(2)(η(6),η(6)-μ-C(6)H(6)) having quintet, triplet, and singlet spin states, respectively. In these structures, the central benzene ring functions as a hexahapto ligand to each metal atom. The singlet rice-ball cis-Bz(2)M(2)(μ-C(6)H(6)) structures with a 2.64-? Mn═Mn double bond or a 2.81-? Fe-Fe single bond are preferred for the central transition metals Mn and Fe. Singlet triple-decker-sandwich structures trans-Bz(2)M(2)(μ-C(6)H(6)) return as the lowest-energy structures for the late transition metals Co and Ni but with the central benzene ring only partially bonded to each metal atom. Thus, the lowest-energy cobalt derivative has a trans-Bz(2)Co(2)(η(3),η(3)-μ-C(6)H(6)) structure in which the central benzene ring acts as a trihapto ligand to each metal atom. Similarly, the lowest-energy nickel derivative has a trans-Bz(2)Ni(2)(η(2),η(2)-μ-C(6)H(6)) structure in which the central benzene ring acts as a dihapto ligand to each metal atom, leaving an uncomplexed C═C double bond. The metal-metal bond orders in the singlet "rice-ball" structures cis-Bz(2)M(2)(μ-C(6)H(6)) (M = Mn, Fe) and the hapticities of the central benzene rings in the singlet late-transition-metal triple-decker-sandwich structures trans-Bz(2)M(2)(μ-C(6)H(6)) (M = Co, Ni) are governed by the desirability for the metal atoms to attain the favored 18-electron configuration.  相似文献   

2.
Reactions of 1,1'-bis(dipheny1phosphino)cobaltocene with Co(PMe(3))(4), Ni(PMe(3))(4), Fe(PMe(3))(4), Ni(COD)(2), FeMe(2)(PMe(3))(4) or NiMe(2)(PMe(3))(3) afford a series of novel dinuclear complexes [((Me(3)P)[lower bond 1 start]Co(η(5)-C(5)H(4)[upper bond 1 start]PPh(2)))((Me(3)P)M[upper bond 1 end](η(5)-C(5)H(4)P[lower bond 1 end]Ph(2)))] (M = Co(1), Ni(2) and Fe(3)) [Co(η(5)-C(5)H(4)[upper bond 1 start]PPh(2))(2)Ni[upper bond 1 end](COD)](4), [Co(η(5)-C(5)H(4)[upper bond 1 start]PPh(2))(2)Ni[upper bond 1 end](PMe(3))(2)] (5) and [((Me(3)P)[lower bond 1 start]Co(Me)(η(5)-C(5)H(4)[upper bond 1 start]PPh(2)))((Me(3)P)Fe[upper bond 1 end](Me)(η(5)-C(5)H(4)P[lower bond 1 end]Ph(2)))] (6). Reactions of 1,1'-bis(dipheny1phosphino)ferrocene with Ni(PMe(3))(4), NiMe(2)(PMe(3))(3), or Co(PMe(3))(4) gives rise to complexes [Fe(η(5)-C(5)H(4)[upper bond 1 start]PPh(2))(2)M[upper bond 1 end](PMe(3))(2)] (M = Ni (7), Co (8)). The complexes 1-8 were spectroscopically investigated and studied by X-ray single crystal diffraction. The possible reaction mechanisms and structural characteristics are discussed. Density functional theory (DFT) calculations strongly support the deductions.  相似文献   

3.
Azulene is reported to react with Mn(2)(CO)(10) to give trans-C(10)H(8)Mn(2)(CO)(6), which has been shown by X-ray crystallography to have a bis(pentahapto) structure with no metal-metal bond. This structure is found by density functional theory to be the lowest energy C(10)H(8)Mn(2)(CO)(6) structure. However, a corresponding bis(pentahapto) cis-C(10)H(8)Mn(2)(CO)(6) structure, also without an Mn···Mn bond, lies within ~1 kcal mol(-1) of this global minimum. The lowest energy C(10)H(8)Mn(2)(CO)(5) structure is singlet cis-η(5),η(5)-C(10)H(8)Mn(2)(CO)(5) with an Mn→Mn dative bond from the Mn(CO)(3) group to the Mn(CO)(2) group. However, a singlet cis-η(6),η(4)-C(10)H(8)Mn(2)(CO)(5) structure with a normal Mn-Mn single bond lies within ~6 kcal mol(-1) of this global minimum. The lowest energy structures of the more highly unsaturated C(10)H(8)Mn(2)(CO)(n) (n = 4, 3, 2) systems all have cis geometries and manganese-manganese bonds of various orders. The corresponding global minima are triplet cis-η(5),η(3)-C(10)H(8)Mn(2)(CO)(3)(η(2)-μ-CO) for the tetracarbonyl with a four-electron donor bridging carbonyl group, singlet cis-η(5),η(5)-C(10)H(8)Mn(2)(CO)(3) for the tricarbonyl, and triplet cis-η(6),η(4)-C(10)H(8)Mn(2)(CO)(η(2)-μ-CO) for the dicarbonyl.  相似文献   

4.
The reaction between M(2)Cl(2)(NMe(2))(4), where M = Mo or W, and Hhpp (8 equiv) in a solid-state melt reaction at 150 degrees C yields the compounds M(2)(hpp)(4)Cl(2) 1a (M = Mo) and 1b (M = W), respectively, by the elimination of HNMe(2) [hpp is the anion derived from deprotonation of 1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidine, Hhpp]. Purification of 1a and 1b is achieved by sublimation of the excess Hhpp and subsequent recrystallization from either CH(2)Cl(2) or CHCl(3) (or CDCl(3)). By single-crystal X-ray crystallography, the structures of 1a and 1b are shown to contain a central paddlewheel-like M(2)(hpp)(4) core with Mo-Mo = 2.1708(8) A (from CH(2)Cl(2)), 2.1574(5) A (from CDCl(3)), W-W = 2.2328(2) A (from CDCl(3)), and M-N = 2.09(1) (av) A. The Cl ligands are axially ligated (linear Cl-M-M-Cl) with abnormally long M-Cl bond distances that, in turn, depend on the presence or absence of hydrogen bonding to chloroform. The quadruply bonded compounds M(2)(hpp)(4), 2a (M = Mo), and 2b (M = W), can be prepared from the reactions between 1,2-M(2)R(2)(NMe(2))(4) compounds, where R = (i)()Bu or p-tolyl, and Hhpp (4 equiv) in benzene by ligand replacement and reductive elimination. The compounds 2a and 2b are readily oxidized, and in chloroform they react to form 1a and 1b, respectively. The electronic structure and bonding in the compounds 1a, 1b, 2a, and 2b have been investigated using gradient corrected density functional theory employing Gaussian 98. The bonding in the M-M quadruply bonded compounds, 2a and 2b, reveals M-M delta(2) HOMOs and extensive mixing of M-M pi and nitrogen ligand lone-pair orbitals in a manner qualitatively similar to that of the M(2)(formamidinates)(4). The calculations indicate that in the chloride compounds, 1a and 1b, the HOMO is strongly M-Cl sigma antibonding and weakly M-M sigma bonding in character. Formally there is a M-M triple bond of configuration pi(4)sigma(2), and the LUMO is the M-M delta orbital. An interesting mixing of M-M and M-Cl pi interactions occurs, and an enlightening analogy emerges between these d(4)-d(4) and d(3)-d(3) dinuclear compounds and the bonding in C(2), C(2)H(2), and C(2)Cl(2), which is interrogated herein by simple theoretical calculations together with the potential bonding in axially ligated compounds where strongly covalent M-X bonds are present. The latter were represented by the model compounds M(2)(hpp)(4)(H)(2). On the basis of calculations, we estimate the reactions M(2)(hpp)(4) + X(2) to give M(2)(hpp)(4)X(2) to be enthalpically favorable for X = Cl but not for X = H. These results are discussed in terms of the recent work of Cotton and Murillo and our attempts to prepare parallel-linked oligomers of the type [[bridge]-[M(2)]-](n)().  相似文献   

5.
A series of novel organically templated metal sulfates, [C(5)H(14)N(2)][M(II)(H(2)O)(6)](SO(4))(2) with (M(II) = Mn (1), Fe (2), Co (3) and Ni (4)), have been successfully synthesized by slow evaporation and characterized by single-crystal X-ray diffraction as well as with infrared spectroscopy, thermogravimetric analysis and magnetic measurements. All compounds were prepared using a racemic source of the 2-methylpiperazine and they crystallized in the monoclinic systems, P2(1)/n for (1, 3) and P2(1)/c for (2,4). Crystal data are as follows: [C(5)H(14)N(2)][Mn(H(2)O)(6)](SO(4))(2), a = 6.6385(10) ?, b = 11.0448(2) ?, c = 12.6418(2) ?, β = 101.903(10)°, V = 906.98(3) ?(3), Z = 2; [C(5)H(14)N(2)][Fe(H(2)O)(6)](SO(4))(2), a = 10.9273(2) ?, b = 7.8620(10) ?, c = 11.7845(3) ?, β = 116.733(10)°, V = 904.20(3) ?(3), Z = 2; [C(5)H(14)N(2)][Co(H(2)O)(6)](SO(4))(2), a = 6.5710(2) ?, b = 10.9078(3) ?, c = 12.5518(3) ?, β = 101.547(2)°, V = 881.44(4) ?(3), Z = 2; [C(5)H(14)N(2)][Ni(H(2)O)(6)](SO(4))(2), a = 10.8328(2) ?, b = 7.8443(10) ?, c = 11.6790(2) ?, β = 116.826(10)°, V = 885.63(2) ?(3), Z = 2. The three-dimensional structure networks for these compounds consist of isolated [M(II)(H(2)O)(6)](2+) and [C(5)H(14)N(2)](2+) cations and (SO(4))(2-) anions linked by hydrogen-bonds only. The use of racemic 2-methylpiperazine results in crystallographic disorder of the amines and creation of inversion centers. The magnetic measurements indicate that the Mn complex (1) is paramagnetic, while compounds 2, 3 and 4, (M(II) = Fe, Co, Ni respectively) exhibit single ion anisotropy.  相似文献   

6.
A sequence of first row transition metal(II) dithiolates M(SAr)(2) (M = Cr(1), Mn(2), Fe(3), Co(4), Ni(5) and Zn(6); Ar = C(6)H(3)-2,6-(C(6)H(2)-2,4,6-Pr(i)(3))(2)) has been synthesized and characterized. Compounds 1-5 were obtained by the reaction of two equiv of LiSAr with a metal dihalide, whereas 6 was obtained by treatment of ZnMe(2) with 2 equiv of HSAr. They were characterized by spectroscopy, magnetic measurements, and X-ray crystallography. The dithiolates 1, 2, and 4-6 possess linear or nearly linear SMS units with further interactions between M and two ipso carbons from C(6)H(2)-2,4,6-Pr(i)(3) rings. The iron species 3, however, has a bent geometry, two different Fe-S distances, and an interaction between iron and one ipso carbon of a flanking ring. The secondary M-C interactions vary in strength in the sequence Cr(2+) approximately Fe(2+) > Co(2+) approximately Ni(2+) > Mn(2+) approximately Zn(2+) such that the manganese and zinc compounds have essentially two coordination but the chromium and iron complexes are quasi four and three coordinate, respectively. The geometric distortions in the iron species 3 suggested that the structure represents the initial stage of a rearrangement into a sandwich structure involving metal-aryl ring coordination. The bent structure of 3 probably also precludes the observation of free ion magnetism of Fe(2+) recently reported for Fe{C(SiMe(3))(3)}(2). DFT calculations on the model compounds M(SPh)(2) (M = Cr-Ni) support the higher tendency of the iron species to distort its geometry.  相似文献   

7.
A number of evanescent unsubstituted homoleptic allyl derivatives M(C(3)H(5))(n) of the first row transition metals have been reported in the literature. In addition, the much more thermally stable silylated derivatives M[C(3)H(3)(SiMe(3))(2)](2) (M = Cr, Fe, Co, Ni) are reported to survive vacuum sublimation without significant decomposition. In this connection, the complete series of homoleptic allyl derivatives M(C(3)H(5))(n) (n = 2, 3; M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni) have been studied theoretically using density functional theory. In most of the lowest energy predicted M(C(3)H(5))(n) structures all of the allyl groups are bonded as trihapto η(3)-C(3)H(5) ligands and the metals have considerably less than the normally favored 18-electron configuration. Such ligands can be considered formally as bidentate ligands with the metal atom connected to the centers of the two C-C bonds of the η(3)-C(3)H(5) group. The later transition metal diallyls M(C(3)H(5))(2) (M = Cr, Mn, Fe, Co, Ni) form two stereoisomers of similar relative energies, namely the C(2h) staggered isomer and the C(2v) eclipsed isomer with the orientation of the η(3)-C(3)H(5) groups corresponding to square planar metal coordination of the bidentate η(3)-C(3)H(5) ligands. The staggered and eclipsed Ni(C(3)H(5))(2) isomers have been observed experimentally by NMR. Less symmetrical M(C(3)H(5))(2) structures are found for the earlier transition metals Sc, Ti, and V in which the orientation of the allyl groups corresponds to tetrahedral metal coordination. The triallylmetal derivatives M(C(3)H(5))(3) are predicted to be thermodynamically viable with respect to allyl loss to give the corresponding diallylmetal derivatives, except for triallylnickel. The lowest energy Ni(C(3)H(5))(3) structure has two trihaptoallyl ligands and one monohaptoallyl ligand, whereas the lowest energy Mn(C(3)H(5))(3) structures have only one trihaptoallyl ligand and two monohaptoallyl ligands. Otherwise, the M(C(3)H(5))(3) complexes have structures with three trihaptoallyl ligands corresponding formally to octahedral metal coordination. The M(C(3)H(5))(3) complexes (M = Cr, Co) thus correspond to a well-known series of "classical" octahedral coordination complexes, namely, those of the d(3) Cr(III) and the d(6) Co(III), respectively.  相似文献   

8.
Chen J  Chen S  Zhong L  Feng H  Xie Y  King RB 《Inorganic chemistry》2011,50(4):1351-1360
Methylborole iron tricarbonyl, (η(5)-C(4)H(4)BCH(3))Fe(CO)(3), is known experimentally and is a potential source of binuclear (C(4)H(4)BCH(3))(2)Fe(2)(CO)(n) (n = 5, 4, 3, 2, 1) derivatives through reactions such as photolysis. In this connection the lowest energy (C(4)H(4)BCH(3))(2)Fe(2)(CO)(5) structures are predicted theoretically to have a single bridging carbonyl group and Fe-Fe distances consistent with formal single bonds. The lowest energy (C(4)H(4)BCH(3))(2)Fe(2)(CO)(4) structures have two bridging carbonyl groups and Fe═Fe distances suggesting formal double bonds. Analogously, the lowest energy (C(4)H(4)BCH(3))(2)Fe(2)(CO)(3) structures have three bridging carbonyl groups and very short Fe≡Fe distances suggesting formal triple bonds. The tetracarbonyl (C(4)H(4)BCH(3))(2)Fe(2)(CO)(4) is predicted to be thermodynamically unstable toward disproportionation into (C(4)H(4)BCH(3))(2)Fe(2)(CO)(5) + (C(4)H(4)BCH(3))(2)Fe(2)(CO)(3), whereas the tricarbonyl is thermodynamically viable toward analogous disproportionation. The lowest energy structures of the more highly unsaturated methylborole iron carbonyls (C(4)H(4)BCH(3))(2)Fe(2)(CO)(n) (n = 2, 1) have hydrogen atoms bridging an iron-carbon bond. In addition, the lowest energy (C(4)H(4)BCH(3))(2)Fe(2)(CO) structures are "slipped perpendicular" structures with bridging methylborole ligands, a terminal carbonyl group, and agostic CH(3)→Fe interactions involving the methyl hydrogens. Thus, in these highly unsaturated systems the methyl substituent in the methylborole ligand chosen in this work is not an "innocent bystander" but instead participates in the metal-ligand bonding.  相似文献   

9.
A general method for the synthesis of cage-carbon-functionalized cyclopentadienyl iron and cyclopentadienyl ruthenium tricarbadecaboranyl complexes has been developed that employs palladium-catalyzed Sonogashira, Heck, and Stille cross-coupling reactions directed at a cage-carbon haloaryl substituent. The key Li(+)[6-(p-XC(6)H(4))-nido-5,6,9-C(3)B(7)H(9)(-)] (X = I (1), Br (2), Cl (3)) haloaryl-tricarbadecaboranyl anionic ligands were synthesized in high yields via the reaction of the arachno-4,6-C(2)B(7)H(12)(-) anion with the corresponding p-halobenzonitriles (p-XC(6)H(4)-CN). The reactions of the salts 1-3 with (η(5)-C(5)H(5))Fe(CO)(2)I and (η(5)-C(5)H(5))Ru(CH(3)CN)(3)PF(6) were then used to produce the haloaryl complexes 1-(η(5)-C(5)H(5))-2-(p-XC(6)H(4))-closo-1,2,3,4-MC(3)B(7)H(9) (M = Fe, X = I (4), Br (5), Cl (6) and M = Ru, X = I (7), Br (8), Cl (9)). The sonication-promoted Sonogashira coupling reactions of 4 with terminal alkynes catalyzed by Pd(dppf)(2)Cl(2)/CuI yielded the alkynyl-linked derivatives 1-(η(5)-C(5)H(5))-2-p-RC(6)H(4)-closo-1,2,3,4-FeC(3)B(7)H(9) (R = (PhC≡C)- (10), (CH(3)CH(2)C(O)OCH(2)C≡C)- (11), ((η(5)-C(5)H(5))Fe(η(5)-C(5)H(4)C≡C))- (12)). Heck reactions of 4 with terminal alkenes catalyzed by Pd(OAc)(2) yielded the alkene-functionalized products 1-(η(5)-C(5)H(5))-2-p-RC(6)H(4)-closo-1,2,3,4-FeC(3)B(7)H(9) (R = (PhCH(2)CH═CH)- (13), (CH(3)(CH(2))(2)CH═CH)- (14)), while the Stille cross-coupling reactions of 4 with organotin compounds catalyzed by Pd(PPh(3))(2)Cl(2) afforded the complexes 1-(η(5)-C(5)H(5))-2-p-RC(6)H(4)-closo-1,2,3,4-FeC(3)B(7)H(9) (R = Ph- (15), (CH(2)═CH)- (16), (CH(2)═CHCH(2))- (17)). These reactions thus provide facile and systematic access to a wide variety of new types of functionalized metallatricarbadecaboranyl complexes with substituents needed for potential metallocene-like biomedical and/or optoelectronic applications.  相似文献   

10.
The reaction of complex (ArN═)(2)Mo(PMe(3))(3) (Ar = 2,6-diisopropylphenyl) with PhSiH(3) gives the β-agostic NSi-H···M silyamido complex (ArN═)Mo(SiH(2)Ph)(PMe(3))(η(3)-ArN-SiHPh-H) (3) as the first product. 3 decomposes in the mother liquor to a mixture of hydride compounds, including complex {η(3)-SiH(Ph)-N(Ar)-SiHPh-H···}MoH(3)(PMe(3))(3) characterized by NMR. Compound 3 was obtained on preparative scale by reacting (ArN═)(2)Mo(PMe(3))(3) with 2 equiv of PhSiH(3) under N(2) purging and characterized by multinuclear NMR, IR, and X-ray diffraction. Analogous reaction of (Ar'N═)(2)Mo(PMe(3))(3) (Ar' = 2,6-dimethylphenyl) with PhSiH(3) affords the nonagostic silylamido derivative (Ar'N═)Mo(SiH(2)Ph)(PMe(3))(2)(NAr'{SiH(2)Ph}) (5) as the first product. 5 decomposes in the mother liquor to a mixture of {η(3)-PhHSi-N(Ar')-SiHPh-H···}MoH(3)(PMe(3))(3), (Ar'N═)Mo(H)(2)(PMe(3))(2)(η(2)-Ar'N═SiHPh), and other hydride species. Catalytic and stoichiometric reactivity of 3 was studied. Complex 3 undergoes exchange with its minor diastereomer 3' by an agostic bond-opening/closing mechanism. It also exchanges the classical silyl group with free silane by an associative mechanism which most likely includes dissociation of the Si-H agostic bond followed by the rate-determining silane σ-bond metathesis. However, labeling experiments suggest the possibility of an alternative (minor) pathway in this exchange including a silanimine intermediate. 3 was found to catalyze dehydrogenative coupling of silane, hydrosilylation of carbonyls and nitriles, and dehydrogenative silylation of alcohols and amines. Stoichiometric reactions of 3 with nitriles proceed via intermediate formation of η(2)-adducts (ArN═)Mo(PMe(3))(η(2)-ArN═SiHPh)(η(2)-N≡CR), followed by an unusual Si-N coupling to give (ArN═)Mo(PMe(3))(κ(2)-NAr-SiHPh-C(R)═N-). Reactions of 3 with carbonyls lead to η(2)-carbonyl adducts (ArN═)(2)Mo(O═CRR')(PMe(3)) which were independently prepared by reactions of (ArN═)(2)Mo(PMe(3))(3) with the corresponding carbonyl O═CRR'. In the case of reaction with benzaldehyde, the silanimine adduct (ArN═)Mo(PMe(3))(η(2)-ArN═SiHPh)(η(2)-O═CHPh) was observed by NMR. Reactions of complex 3 with olefins lead to products of Si(ag)-C coupling, (ArN═)Mo(Et)(PMe(3))(η(3)-NAr-SiHPh-CH═CH(2)) (17) and (ArN═)Mo(H)(PMe(3))(η(3)-NAr-SiHPh-CH═CHPh), for ethylene and styrene, respectively. The hydride complex (ArN═)Mo(H)(PMe(3))(η(3)-NAr-SiHPh-CH═CH(2)) was obtained from 17 by hydrogenation and reaction with PhSiH(3). Mechanistic studies of the latter process revealed an unusual dependence of the rate constant on phosphine concentration, which was explained by competition of two reaction pathways. Reaction of 17 with PhSiH(3) in the presence of BPh(3) leads to agostic complex (ArN═)Mo(SiH(2)Ph)(η(3)-NAr-Si(Et)Ph-H)(η(2)-CH(2)═CH(2)) (24) having the Et substituent at the agostic silicon. Mechanistic studies show that the Et group stems from hydrogenation of the vinyl substituent by silane. Reaction of 24 with PMe(3) gives the agostic complex (ArN═)Mo(SiH(2)Ph)(PMe(3))(η(3)-NAr-Si(Et)Ph-H), which slowly reacts with PhSiH(3) to furnish silylamide 3 and the hydrosilylation product PhEtSiH(2). A mechanism involving silane attack on the imido ligand was proposed to explain this transformation.  相似文献   

11.
New heterobimetallic tetranuclear complexes of formula [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Mn(II)(bpy)(2)](2)(ClO(4))(2)·CH(3)CN (1), [Fe(III){HB(pz)(3)}(CN)(2)(μ-CN)Ni(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (2a), [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Ni(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (2b), [Fe(III){HB(pz)(3)}(CN)(2)(μ-CN)Co(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (3a), and [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Co(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (3b), [HB(pz)(3)(-) = hydrotris(1-pyrazolyl)borate, B(Pz)(4)(-) = tetrakis(1-pyrazolyl)borate, dmphen = 2,9-dimethyl-1,10-phenanthroline, bpy = 2,2'-bipyridine] have been synthesized and structurally and magnetically characterized. Complexes 1-3b have been prepared by following a rational route based on the self-assembly of the tricyanometalate precursor fac-[Fe(III)(L)(CN)(3)](-) (L = tridentate anionic ligand) and cationic preformed complexes [M(II)(L')(2)(H(2)O)(2)](2+) (L' = bidentate α-diimine type ligand), this last species having four blocked coordination sites and two labile ones located in cis positions. The structures of 1-3b consist of cationic tetranuclear Fe(III)(2)M(II)(2) square complexes [M = Mn (1), Ni (2a and 2b), Co (3a and 3b)] where corners are defined by the metal ions and the edges by the Fe-CN-M units. The charge is balanced by free perchlorate anions. The [Fe(L)(CN)(3)](-) complex in 1-3b acts as a ligand through two cyanide groups toward two divalent metal complexes. The magnetic properties of 1-3b have been investigated in the temperature range 2-300 K. A moderately strong antiferromagnetic interaction between the low-spin Fe(III) (S = 1/2) and high-spin Mn(II) (S = 5/2) ions has been found for 1 leading to an S = 4 ground state (J(1) = -6.2 and J(2) = -2.7 cm(-1)), whereas a moderately strong ferromagnetic interaction between the low-spin Fe(III) (S = 1/2) and high-spin Ni(II) (S = 1) and Co(II) (S = 3/2) ions has been found for complexes 2a-3b with S = 3 (2a and 2b) and S = 4 (3a and 3b) ground spin states [J(1) = +21.4 cm(-1) and J(2) = +19.4 cm(-1) (2a); J(1) = +17.0 cm(-1) and J(2) = +12.5 cm(-1) (2b); J(1) = +5.4 cm(-1) and J(2) = +11.1 cm(-1) (3a); J(1) = +8.1 cm(-1) and J(2) = +11.0 cm(-1) (3b)] [the exchange Hamiltonian being of the type H? = -J(S?(i)·S?(j))]. Density functional theory (DFT) calculations have been used to substantiate the nature and magnitude of the exchange magnetic coupling observed in 1-3b and also to analyze the dependence of the exchange magnetic coupling on the structural parameters of the Fe-C-N-M skeleton.  相似文献   

12.
[(η(6)-C(10)H(14))RuCl(μ-Cl)](2) (η(6)-C(10)H(14) = η(6)-p-cymene) was subjected to a bridge-splitting reaction with N,N',N'-triarylguanidines, (ArNH)(2)C═NAr, in toluene at ambient temperature to afford [(η(6)-C(10)H(14))RuCl{κ(2)(N,N')((ArN)(2)C-N(H)Ar)}] (Ar = C(6)H(4)Me-4 (1), C(6)H(4)(OMe)-2 (2), C(6)H(4)Me-2 (3), and C(6)H(3)Me(2)-2,4 (4)) in high yield with a view aimed at understanding the influence of substituent(s) on the aryl rings of the guanidine upon the solid-state structure, solution behavior, and reactivity pattern of the products. Complexes 1-3 upon reaction with NaN(3) in ethanol at ambient temperature afforded [(η(6)-C(10)H(14))RuN(3){κ(2)(N,N')((ArN)(2)C-N(H)Ar)}] (Ar = C(6)H(4)Me-4 (5), C(6)H(4)(OMe)-2 (6), and C(6)H(4)Me-2 (7)) in high yield. [3 + 2] cycloaddition reaction of 5-7 with RO(O)C-C≡C-C(O)OR (R = Et (DEAD) and Me (DMAD)) (diethylacetylenedicarboxylate, DEAD; dimethylacetylenedicarboxylate, DMAD) in CH(2)Cl(2) at ambient temperature afforded [(η(6)-C(10)H(14))Ru{N(3)C(2)(C(O)OR)(2)}{κ(2)(N,N')((ArN)(2)C-N(H)Ar)}]·xH(2)O (x = 1, R = Et, Ar = C(6)H(4)Me-4 (8·H(2)O); x = 0, R = Me, Ar = C(6)H(4)(OMe)-2 (9), and C(6)H(4)Me-2 (10)) in moderate yield. The molecular structures of 1-6, 8·H(2)O, and 10 were determined by single crystal X-ray diffraction data. The ruthenium atom in the aforementioned complexes revealed pseudo octahedral "three legged piano stool" geometry. The guanidinate ligand in 2, 3, and 6 revealed syn-syn conformation and that in 4, and 10 revealed syn-anti conformation, and the conformational difference was rationalized on the basis of subtle differences in the stereochemistry of the coordinated nitrogen atoms caused by the aryl moiety in 3 and 4 or steric overload caused by the substituents around the ruthenium atom in 10. The bonding pattern of the CN(3) unit of the guanidinate ligand in the new complexes was explained by invoking n-π conjugation involving the interaction of the NHAr/N(coord)Ar lone pair with C═Nπ* orbital of the imine unit. Complexes 1, 2, 5, 6, 8·H(2)O, and 9 were shown to exist as a single isomer in solution as revealed by NMR data, and this was ascribed to a fast C-N(H)Ar bond rotation caused by a less bulky aryl moiety in these complexes. In contrast, 3 and 10 were shown to exist as a mixture of three and five isomers in about 1:1:1 and 1·0:1·2:2·7:3·5:6·9 ratios, respectively in solution as revealed by a VT (1)H NMR, (1)H-(1)H COSY in conjunction with DEPT-90 (13)C NMR data measured at 233 K in the case of 3. The multiple number of isomers in solution was ascribed to the restricted C-N(H)(o-tolyl) bond rotation caused by the bulky o-tolyl substituent in 3 or the aforementioned restricted C-NH(o-tolyl) bond rotation as well as the restricted ruthenium-arene(centroid) bond rotation caused by the substituents around the ruthenium atom in 10.  相似文献   

13.
Yin P  Gao S  Wang ZM  Yan CH  Zheng LM  Xin XQ 《Inorganic chemistry》2005,44(8):2761-2765
This paper reports the syntheses and characterization of four isomorphous compounds (NH(3)C(6)H(4)NH(3))M(2)(hedpH)(2).H(2)O [M = Fe (1), Co (2), Mn (3), Zn (4); hedp = C(CH(3))(OH)(PO(3))(2)]. Each contains two crystallographically different kinds of {M(2)(hedpH)(2)}(n) double chains, where the {M(2)(mu-O)(2)} dimer units are connected by O-P-O bridges. The double chains are connected through extensive hydrogen bonds, hence generating a three-dimensional supramolecular network. The temperature-dependent magnetic susceptibility measurements show dominant antiferromagnetic interactions in compounds 1-3, mediated through the mu-O and/or O-P-O bridges between the metal(II) centers. The magnetization measurements reveal that compounds 1-3 experience field-induced magnetic transitions at low temperatures.  相似文献   

14.
Treatment of [Mo(N(2))(PMe(3))(5)] with two equivalents GaCp* (Cp* = η(5)-C(5)(CH(3))(5)) leads to the formation of cis-[Mo(GaCp*)(2)(PMe(3))(4)] (1), while AlCp* did not react with this precursor. In addition, [Ni(GaCp*)(2)(PPh(3))(2)] (2a), [Ni(AlCp*)(2)(PPh(3))(2)] (2b), [Ni(GaCp*)(2)(PCy(3))(2)] (3a), [Ni(GaCp*)(2)(PMe(3))(2)] (3b), [Ni(GaCp*)(3)(PCy(3))] (4) and [Ni(GaCp*)(PMe(3))(3)] (5) have been prepared in high yields by a direct synthesis from [Ni(COD)(2)] and stoichiometric amounts of the ligands PR(3) and ECp* (E = Al, Ga), respectively. All compounds have been fully characterized by (1)H, (13)C, and (31)P NMR spectroscopy, elemental analysis and single crystal X-ray diffraction studies.  相似文献   

15.
Deprotonation of the phosphamonocarbaborane, exo-6-R-arachno-6,7-PCB(8)H(12) (R = Ph 1a or Me 1b), yields exo-6-R-arachno-6,7-PCB(8)H(11)(-), which when reacted with appropriate transition-metal reagents affords new metallaphosphamonocarbaborane complexes in which the metals adopt endo-eta(1), exo-eta(1), eta(4), eta(5), or eta(6) coordination geometries bonded to the formal R-arachno-PCB(8)H(11)(-), R-arachno-PCB(8)H(10)(2-), R-arachno-PCB(8)H(9)(3-), or R-nido-PCB(8)H(9)(-) ligands. The reaction of exo-6-(C(6)H(5))-arachno-6,7-PCB(8)H(11)(-) (1a-) with Mn(CO)(5)Br generated the eta(1)-sigma product exo-6-[Mn(CO)(5)]-endo-6-(C(6)H(5))-arachno-6,7-PCB(8)H(11) (2) having the [Mn(CO)(5)] fragment in the thermodynamically favored exo position at the P6 cage atom. On the other hand, reaction of 1a- with (eta(5)-C(5)H(5))Fe(CO)(2)I resulted in the formation of two products, an eta(1)-sigma complex endo-6-[(eta(5)-C(5)H(5))Fe(CO)(2)]-exo-6-(C(6)H(5))-arachno-6,7-PCB(8)H(11) (3) having the (eta(5)-C(5)H(5))Fe(CO)(2) fragment attached at the endo-P6 position and an eta(6)-closo complex, 1-(eta(5)-C(5)H(5))-2-(C(6)H(5))-closo-1,2,3-FePCB(8)H(9) (4a). Rearrangement of the endo-compound 3 to its exo-isomer 5 was observed upon photolysis of 3. Synthesis of the methyl analogue of 4a, 1-(eta(5)-C(5)H(5))-2-CH(3)-closo-1,2,3-FePCB(8)H(9) (4b), along with a double-insertion product, 1-CH(3)-2,3-(eta(5)-C(5)H(5))(2)-2,3,1,7-Fe(2)PCB(8)H(9) (6), containing two iron atoms eta(5)-coordinated to a formal R-arachno-PCB(8)H(9)(3-), was achieved by reaction of exo-6-CH(3)-arachno-6,7-PCB(8)H(11)(-) (1b-) with FeCl(2) and Na(+)C(5)H(5)(-). Complexes 4a and 4b can be considered ferrocene analogues, in which an Fe(II) is sandwiched between C(5)H(5)(-) and 6-R-nido-6,9-PCB(8)H(9)(-) anions. Reaction of exo-6-(C(6)H(5))-arachno-6,7-PCB(8)H(11)(-) (1a-) with cis-dichlorobis(triphenylphosphine)platinum (II) afforded two compounds, an eta(1)-sigma complex with the metal fragment again in the endo-P6 position, endo-6-[cis-(Ph(3)P)(2)PtCl]-exo-6-(C(6)H(5))-arachno-6,7-PCB(8)H(11) (7) and an eta(4)-complex, 7-(C(6)H(5))-11-(Ph(3)P)(2)-nido-11,7,8-PtPCB(8)H(10) (8) containing the formal R-arachno-PCB(8)H(10)(2)(-) anion. The structures of compounds 2, 3, 4a, 4b, 6, 7, and 8 were crystallographically confirmed.  相似文献   

16.
Reactions of N-heterocyclic carbene stabilized dichlorosilylene IPr·SiCl(2) (1) (IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) with (η(5)-C(5)H(5))V(CO)(4), (η(5)-C(5)H(5))Co(CO)(2), and Fe(2)(CO)(9) afford dichlorosilylene complexes IPr·SiCl(2)·V(CO)(3)(η(5)-C(5)H(5)) (2), IPr·SiCl(2)·Co(CO)(η(5)-C(5)H(5)) (3), and IPr·SiCl(2)·Fe(CO)(4) (4), respectively. Complexes 2-4 are stable under an inert atmosphere, are soluble in common organic solvents, and have been characterized by elemental analysis and multinuclear ((1)H, (13)C, and (29)Si) NMR spectroscopy. Molecular structures of 2-4 have been determined by single crystal X-ray crystallographic studies and refined with nonspherical scattering factors.  相似文献   

17.
Gu ZG  Yang QF  Liu W  Song Y  Li YZ  Zuo JL  You XZ 《Inorganic chemistry》2006,45(22):8895-8901
The reactions of [M(II)(Tpm(Me))(H2O)3]2+ (M = Ni, Co, Fe; Tpm(Me) = tris(3,5-dimethyl-1-pyrazoyl)methane) with [Bu4N][(Tp)Fe(III)(CN)3] (Bu4N+ = tetrabutylammonium cation; Tp = tris(pyrazolyl)hydroborate) in MeCN-Et2O afford three pentanuclear cyano-bridged clusters, [(Tp)3(Tpm(Me))2Fe(III)3M(II)2(CN)9]ClO4.15H2O (M = Ni, 1; M = Co, 2) and [(Tp)3(Tpm(Me))2Fe(III)3Fe(II)2(CN)9]BF4.15H2O (3). Single-crystal X-ray analyses reveal that they show the same trigonal bipyramidal structure featuring a D3h-symmetry core, in which two opposing Tpm(Me)-ligated M(II) ions situated in the two apical positions are linked through cyanide bridges to an equatorial triangle of three Tp-ligated Fe(III) (S = 1/2) centers. Magnetic studies for complex 1 show ferromagnetic coupling giving an S = 7/2 ground state and an appreciable magnetic anisotropy with a negative D(7/2) value equal to -0.79 cm(-1). Complex 2 shows zero-field splitting parameters deducted from the magnetization data with D = -1.33 cm(-1) and g = 2.81. Antiferromagnetic interaction was observed in complex 3.  相似文献   

18.
In the present study the interaction of Fe(II) and Ni(II) with the related expanded quaterpyridines, 1,2-, 1,3- and 1,4-bis-(5'-methyl-[2,2']bipyridinyl-5-ylmethoxy)benzene ligands (4-6 respectively), incorporating flexible, bis-aryl/methylene ether linkages in the bridges between the dipyridyl domains, was shown to predominantly result in the assembly of [M(2)L(3)](4+) complexes; although with 4 and 6 there was also evidence for the (minor) formation of the corresponding [M(4)L(6)](8+) species. Overall, this result contrasts with the behaviour of the essentially rigid 'parent' quaterpyridine 1 for which only tetrahedral [M(4)L(6)](8+) cage species were observed when reacted with various Fe(II) salts. It also contrasts with that observed for 2 and 3 incorporating essentially rigid substituted phenylene and biphenylene bridges between the dipyridyl domains where reaction with Fe(II) and Ni(II) yielded both [M(2)L(3)](4+) and [M(4)L(6)](8+) complex types, but in this case it was the latter species that was assigned as the thermodynamically favoured product type. The X-ray structures of the triple helicate complexes [H(2)O?Ni(2)(4)(3)](PF(6))(4)·THF·2.2H(2)O, [Ni(2)(6)(3)](PF(6))(4)·1.95MeCN·1.2THF·1.8H(2)O, and the very unusual triple helicate PF(6)(-) inclusion complex, [(PF(6))?Ni(2)(5)(3)](PF(6))(3)·1.75MeCN·5.25THF·0.25H(2)O are reported.  相似文献   

19.
The reaction of Mn(2)(CO)(7)(mu-S(2)), 1, with Pt(PPh(3))(2)(PhC(2)Ph) yielded the new complex, Mn(2)(CO)(6)Pt(PPh(3))(2)(mu(3)-S)(2), 3, by loss of CO and insertion of a Pt(PPh(3))(2) group into the S-S bond of 1. Complex 3 was characterized crystallographically and was found to consist of an open Mn(2)Pt cluster with one Mn-Mn bond, 2.8154(14) A, one Mn-Pt bond, 2.9109(10) A, and two triply bridging sulfido ligands. Compound 3 reacts with CO to form adduct Mn(2)(CO)(6)(mu-CO)Pt(PPh(3))(2)(mu(3)-S)(2), 4. Compound 4 also contains an open Mn(2)Pt cluster with two triply bridging sulfido ligands but has only one metal-metal bond, Mn-Mn = 2.638(2) A. Under nitrogen, compound 4 readily loses CO and reverts back to 3.  相似文献   

20.
The hydrothermal chemistry of a variety of M(II)SO(4) salts with the tetrazole (Ht) ligands 5,5'-(1,4-phenylene)bis(1H-tetrazole) (H(2)bdt), 5',5'-(1,1'-biphenyl)4,4'-diylbis(1H-tetrazole) (H(2)dbdt) and 5,5',5'-(1,3,5-phenylene)tris(1H-tetrazole) (H(3)btt) was investigated. In the case of Co(II), three phases were isolated, two of which incorporated sulfate: [Co(5)F(2)(dbdt)(4)(H(2)O)(6)]·2H(2)O (1·2H(2)O), [Co(4)(OH)(2)(SO(4))(bdt)(2)(H(2)O)(4)] (2) and [Co(3)(OH)(SO(4))(btt)(H(2)O)(4)]·3H(2)O (3·3H(2)O). The structures are three-dimensional and consist of cluster-based secondary building units: the pentanuclear {Co(5)F(2)(tetrazolate)(8)(H(2)O)(6)}, the tetranuclear {Co(4)(OH)(2)(SO(4))(2)(tetrazolate)(6)}(4-), and the trinuclear {Co(3)(μ(3)-OH)(SO(4))(2) (tetrazolate)(3)}(2-) for 1, 2, and 3, respectively. The Ni(II) analogue [Ni(2)(H(0.67)bdt)(3)]·10.5H(2)O (4·10.5H(2)O) is isomorphous with a fourth cobalt phase, the previously reported [Co(2)(H(0.67)bat)(3)]·20H(2)O and exhibits a {M(tetrazolate)(3/2)}(∞) chain as the fundamental building block. The dense three-dimensional structure of [Zn(bdt)] (5) consists of {ZnN(4)}tetrahedra linked through bdt ligands bonding through N1,N3 donors at either tetrazolate terminus. In contrast to the hydrothermal synthesis of 1-5, the Cd(II) material (Me(2)NH(2))(3)[Cd(12)Cl(3)(btt)(8)(DMF)(12)]·xDMF·yMeOH (DMF = dimethylformamide; x = ca. 12, y = ca. 5) was prepared in DMF/methanol. The structure is constructed from the linking of {Cd(4)Cl(tetrazolate)(8)(DMF)(4)}(1-) secondary building units to produce an open-framework material exhibiting 66.5% void volume. The magnetic properties of the Co(II) series are reflective of the structural building units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号