首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Droplet microfluidics   总被引:15,自引:0,他引:15  
Teh SY  Lin R  Hung LH  Lee AP 《Lab on a chip》2008,8(2):198-220
Droplet-based microfluidic systems have been shown to be compatible with many chemical and biological reagents and capable of performing a variety of "digital fluidic" operations that can be rendered programmable and reconfigurable. This platform has dimensional scaling benefits that have enabled controlled and rapid mixing of fluids in the droplet reactors, resulting in decreased reaction times. This, coupled with the precise generation and repeatability of droplet operations, has made the droplet-based microfluidic system a potent high throughput platform for biomedical research and applications. In addition to being used as microreactors ranging from the nano- to femtoliter range; droplet-based systems have also been used to directly synthesize particles and encapsulate many biological entities for biomedicine and biotechnology applications. This review will focus on the various droplet operations, as well as the numerous applications of the system. Due to advantages unique to droplet-based systems, this technology has the potential to provide novel solutions to today's biomedical engineering challenges for advanced diagnostics and therapeutics.  相似文献   

2.
Digital microfluidics for cell-based assays   总被引:1,自引:0,他引:1  
We introduce a new method for implementing cell-based assays. The method is based on digital microfluidics (DMF) which is used to actuate nanolitre droplets of reagents and cells on a planar array of electrodes. We demonstrate that this method is advantageous for cell-based assays because of automated manipulation of multiple reagents in addition to reduced reagent use and analysis time. No adverse effects of actuation by DMF were observed in assays for cell viability, proliferation, and biochemistry. A cytotoxicity assay using Jurkat T-cells was performed using the new method, which had approximately 20 times higher sensitivity than a conventional well plate assay. These results suggest that DMF has great potential as a simple yet versatile analytical tool for implementing cell-based assays on the microscale.  相似文献   

3.
Droplet microfluidics for the study of artificial cells   总被引:1,自引:0,他引:1  
In this review, we describe recent advances in droplet-based microfluidics technology that can be applied in studies of artificial cells. Artificial cells are simplified models of living cells and provide valuable model platforms designed to reveal the functions of biological systems. The study of artificial cells is promoted by microfluidics technologies, which provide control over tiny volumes of solutions during quantitative chemical experiments and other manipulations. Here, we focus on current and future trends in droplet microfluidics and their applications in studies of artificial cells.  相似文献   

4.
TD Rane  HC Zec  C Puleo  AP Lee  TH Wang 《Lab on a chip》2012,12(18):3341-3347
In this article we present a novel droplet microfluidic chip enabling amplification-free detection of single pathogenic cells. The device streamlines multiple functionalities to carry out sample digitization, cell lysis, probe-target hybridization for subsequent fluorescent detection. A peptide nucleic acid fluorescence resonance energy transfer probe (PNA beacon) is used to detect 16S rRNA present in pathogenic cells. Initially the sensitivity and quantification abilities of the platform are tested using a synthetic target mimicking the actual expression level of 16S rRNA in single cells. The capability of the device to perform "sample-to-answer" pathogen detection of single cells is demonstrated using E. coli as a model pathogen.  相似文献   

5.
We report recent advances in the field of droplet-based microfluidics. Specifically, we highlight the unique features of such platforms for high-throughput experimentation; describe functional components that afford complex analytical processing and report on applications in synthesis, high-throughput screening, cell biology and synthetic and systems biology. Issues including the integration of high-information content detection methods, long term droplet stability and opportunities for large scale and intelligent biological experimentation are also discussed.  相似文献   

6.
Shi W  Wen H  Lu Y  Shi Y  Lin B  Qin J 《Lab on a chip》2010,10(21):2855-2863
A droplet-based microfluidic device integrated with a novel floatage-based trap array and a tapered immobilization channel array was presented for characterizing the neurotoxin-induced multiple responses in individual Caenorhabditis elegans (C. elegans) continuously. The established device enabled the evaluations of movement and fluorescence imaging analysis of individual C. elegans simultaneously. The utility of this device was demonstrated by the pharmacological evaluation of neurotoxin (6-hydroxydopamine, 6-OHDA) triggered mobility defects, neuron degeneration and oxidative stress in individual worms. Exposure of living worms to 6-OHDA could cause obvious mobility defects, selective degeneration of dopaminergic (DAergic) neurons, and increased oxidative stress in a dose dependent manner. These results are important towards the understanding of mechanisms leading to DAergic toxicity by neurotoxin and will be of benefit for the screening of new therapeutics for neurodegenerative diseases. This device was simple, stable and easy to operate, with the potential to facilitate whole-animal assays and drug screening in a high throughput manner at single animal resolution.  相似文献   

7.
8.
Protein kinases comprise one of the most important group of targets for drug discovery research today. Methods to identify novel kinase inhibitors by high-throughput screening have evolved rapidly in recent years. An important aspect is the availability of fluorescent probes that can be applied in a homogeneous, or mix-and-measure, assay format. Here, we illustrate the application of fluorescence read-out technologies for kinase targets in light of our own experiences in assay development and high-throughput screening.  相似文献   

9.
Bhagat AA  Hou HW  Li LD  Lim CT  Han J 《Lab on a chip》2011,11(11):1870-1878
Blood is a highly complex bio-fluid with cellular components making up >40% of the total volume, thus making its analysis challenging and time-consuming. In this work, we introduce a high-throughput size-based separation method for processing diluted blood using inertial microfluidics. The technique takes advantage of the preferential cell focusing in high aspect-ratio microchannels coupled with pinched flow dynamics for isolating low abundance cells from blood. As an application of the developed technique, we demonstrate the isolation of cancer cells (circulating tumor cells (CTCs)) spiked in blood by exploiting the difference in size between CTCs and hematologic cells. The microchannel dimensions and processing parameters were optimized to enable high throughput and high resolution separation, comparable to existing CTC isolation technologies. Results from experiments conducted with MCF-7 cells spiked into whole blood indicate >80% cell recovery with an impressive 3.25 × 10(5) fold enrichment over red blood cells (RBCs) and 1.2 × 10(4) fold enrichment over peripheral blood leukocytes (PBL). In spite of a 20× sample dilution, the fast operating flow rate allows the processing of ~10(8) cells min(-1) through a single microfluidic device. The device design can be easily customized for isolating other rare cells from blood including peripheral blood leukocytes and fetal nucleated red blood cells by simply varying the 'pinching' width. The advantage of simple label-free separation, combined with the ability to retrieve viable cells post enrichment and minimal sample pre-processing presents numerous applications for use in clinical diagnosis and conducting fundamental studies.  相似文献   

10.
AC electrothermal enhancement of heterogeneous assays in microfluidics   总被引:2,自引:0,他引:2  
AC-driven electrothermal flow is used to enhance the temporal performance of heterogeneous immuno-sensors in microfluidic systems by nearly an order of magnitude. AC electrokinetic forces are used to generate electrothermal flow, which in turn produces a circular stirring fluid motion that enhances the transport of diffusion-limited proteins. This provides more binding opportunities between suspended antigens and wall-immobilized antibodies. We investigate experimentally the effectiveness of electrothermal stirring, using a biotin-streptavidin heterogeneous assay, in which biotin is immobilized, and fluorescently-labeled streptavidin is suspended in a high conductivity buffer (sigma = 1.0 S m(-1)). Microfabricated electrodes were integrated within a microwell and driven at a frequency of f= 200 kHz and 10 V(rms). Fluorescent intensity measurements show that for a five minute assay, electrothermal stirring increases the binding rate by a factor of almost nine. Similar binding improvement was measured for longer assays, up to fifteen minutes. The electrothermal enhancement of this assay was modeled numerically and agrees with experimental binding rates. The measured fluid velocity of 22 +/- 2 microm s(-1) was significantly lower than that predicted by the numerical model, 1.1 mm s(-1), but nevertheless shows the same fourth power dependence on applied potential. The results demonstrate the ability for electrothermal stirring to reliably improve the response time and sensitivity within a given time limit for microfluidic diffusion-limited sensors.  相似文献   

11.
High-throughput and rapid identification of multiple foodborne bacterial pathogens is vital in global public health and food industry. To fulfill this need, we propose a segmented continuous-flow multiplex polymerase chain reaction (SCF-MPCR) on a spiral-channel microfluidic device. The device consists of a disposable polytetrafluoroethylene (PTFE) capillary microchannel coiled on three isothermal blocks. Within the channel, n segmented flow regimes are sequentially generated, and m-plex PCR is individually performed in each regime when each mixture is driven to pass three temperature zones, thus providing a rapid analysis throughput of m × n. To characterize the performance of the microfluidic device, continuous-flow multiplex PCR in a single segmented flow has been evaluated by investigating the effect of key reaction parameters, including annealing temperatures, flow rates, polymerase concentration and amount of input DNA. With the optimized parameters, the genomic DNAs from Salmonella enterica, Listeria monocytogenes, Escherichia coli O157:H7 and Staphylococcus aureus could be amplified simultaneously in 19 min, and the limit of detection was low, down to 102 copies μL−1. As proof of principle, the spiral-channel SCF-MPCR was applied to sequentially amplify four different bacterial pathogens from banana, milk, and sausage, displaying a throughput of 4 × 3 with no detectable cross-contamination.  相似文献   

12.
Roy E  Galas JC  Veres T 《Lab on a chip》2011,11(18):3193-3196
Multilayer soft lithography of polydimethylsiloxane (PDMS) is a well-known method for the fabrication of complex fluidic functions. With advantages and drawbacks, this technique allows fabrication of valves, pumps and micro-mixers. However, the process is inadequate for industrial applications. Here, we report a rapid prototyping technique for the fabrication of multilayer microfluidic devices, using a different and promising class of polymers. Using styrenic thermoplastic elastomers (TPE), we demonstrate a rapid technique for the fabrication and assembly of pneumatically driven valves in a multilayer microfluidic device made completely from thermoplastics. This material solution is transparent, biocompatible and as flexible as PDMS, and has high throughput thermoforming processing characteristics. We established a proof of principle for valving and mixing with three different grades of TPE using an SU-8 master mold. Specific viscoelastic properties of each grade allow us to report enhanced bonding capabilities from room temperature bonding to free pressure thermally assisted bonding. In terms of microfabrication, beyond classically embossing means, we demonstrate a high-throughput thermoforming method, where TPE molding experiments have been carried out without applied pressure and vacuum assistance within an overall cycle time of 180 s. The quality of the obtained thermoplastic systems show robust behavior and an opening/closing frequency of 5 Hz.  相似文献   

13.
This paper presents the first example of a pharmaceutical application of droplet-based microfluidics coupled with chronoamperometric detection using chip-based carbon paste electrodes (CPEs) for determination of dopamine (DA) and ascorbic acid (AA). Droplets were generated using an oil flow rate of 1.80 μL min−1, whereas a flow rate of 0.80 μL min−1 was applied to the aqueous phase, which resulted in a water fraction of 0.31. The optimum applied potential for chronoamperometric measurements in droplets was found to be 150 mV. Highly reproducible analysis of DA and AA was achieved with relative standard deviations of less than 5% for both intra-day and inter-day measurements. The limit of detection (LOD) and limit of quantitation (LOQ) were found to be 20 and 70 μM for DA and 41 and 137 μM for AA, respectively. Linearity of this method was in the ranges of 0.02–3.0 mM for DA and 0.04–3.0 mM for AA. This system was successfully applied to determine the amounts of DA and AA in intravenous drugs. Calibration curves of DA and AA for quantitative analysis were obtained with good linearity with R2 values of 0.9984 and 0.9988, respectively. Compared with the labeled amounts, the measured concentrations of DA and AA obtained from this system were insignificantly different, with error percentages of less than ±3.0%, indicating a high accuracy of the developed method.  相似文献   

14.
This paper reviews the several different factors that must be considered during the development of assays for high throughput screening (HTS) or in vitro diagnostic (IVD) applications. The reader is introduced to the terminology used in assay development as well as the statistical approaches for evaluating the data. The review is intended to serve as a tutorial to biotechnology, pharmaceutical and clinical professionals, the academic researcher, as well as a guide for established investigators of HTS and IVD. This review is not a comprehensive treatise in its scope or content, but is meant to introduce the reader to key concepts of assay development. Elementary mathematical and statistical tools for designing robust assays and data management are described. While certain design concepts overlap HTS and IVDs, others are more pertinent to one or the other topic. An overview of the regulatory requirements for IVDs is included in the context of the United States Food and Drug Administration. Quality concepts and high content screening are also briefly described. The review does not focus upon any particular assay technology nor does it provide detailed laboratory procedures on specific assays. The references cited are not exhaustive, but meant to steer the reader toward a general status report of the various technologies discussed. The information presented in this review is not intended to replace the judgment of the experienced laboratory scientist. However, this review should assist the scientific professional in executing well designed assays and being aware of design considerations.  相似文献   

15.
Y Zhang  Y Tang  YH Hsieh  CY Hsu  J Xi  KJ Lin  X Jiang 《Lab on a chip》2012,12(17):3012-3015
This work reports an integrated platform combining localized-surface plasmon resonance (LSPR) and microfluidic chips to carry out multiplexed and label-free protein analysis. We fabricated an optical bench to enable detection using only a laboratory UV-Vis spectrophotometer. This assay not only improves throughput, but also allows quantitative analysis.  相似文献   

16.
We demonstrate a chemical and biological sensing mechanism in microfluidics that transduces chemical and biological signals to electrical signals with large intrinsic amplification without need for complex electronics. The sensing mechanism involves a dissolvable membrane separating a liquid sample chamber from an interdigitated electrode. Dissolution of the membrane (here, a disulfide cross-linked poly(acrylamide) hydrogel) in the presence of a specific target (here, a reducing agent-dithiothreitol) allows the target solution to flow into contact with the electrode. The liquid movement displaces the air dielectric with a liquid, leading to a change (open circuit to approximately 1 kOmega) in the resistance between the electrodes. Thus, a biochemical event is transduced into an electrical signal via fluid movement. The concentration of the target is estimated by monitoring the difference in dissolution times of two juxtaposed sensing membranes having different dissolution characteristics. No dc power is consumed by the sensor until detection of the target. A range of targets could be sensed by defining membranes specific to the target. This sensing mechanism might find applications in sensing targets such as toxins, which exhibit enzymatic activity.  相似文献   

17.
Chen PC  Huang YY  Juang JL 《Lab on a chip》2011,11(21):3619-3625
Although the cell-based assay is becoming more popular for high throughput drug screening and the functional characterization of disease-associated genes, most researchers in these areas do not use it because it is a complex and expensive process. We wanted to create a simple method of performing an on-chip cell-based assay. To do this, we used micro-electro-mechanical systems (MEMS) to fabricate a microwell array chip comprised of a glass substrate covered with a photoresist film patterned to form multiple microwells and tested it in two reverse transfection experiments, an exogenous gene expression study and an endogenous gene knockdown study. It was used effectively in both. Then, using the same MEMS technology, we fabricated a complementary microcolumn array to be used as a drug carrier device to topically apply drugs to cells cultured in the microwell array. We tested the effectiveness of microwell-microcolumn on-chip cell-based assay by using it in experiments to identify epidermal growth factor receptor (EGFR) activity inhibitors, for which it was found to provide effective high throughput and high content functional screening. In conclusion, this new method of cell-based screening proved to be a simple and efficient method of characterizing gene function and discovering drug leads.  相似文献   

18.
Several drugs (amphetamine, desipramine, nortriptyline, phenobarbital) have been labelled with metallocenic fragments in order to develop a new immunoassay method. The metallocenic fragments are cymantrenic or benchrotrenic derivatives: the linkage between the organic and organometallic moieties has been achieved by reactions between amino and acidic functional groups. All the products (metallohaptens), purified by different chromatography techniques, have been fully characterized by IR and 1H NMR spectroscopy and their mass spectra.  相似文献   

19.
20.
High-throughput screening has made a significant impact on drug discovery, but there is an acknowledged need for quantitative methods to analyze screening results and predict the activity of further compounds. In this paper we introduce one such method, binary kernel discrimination, and investigate its performance on two datasets; the first is a set of 1650 monoamine oxidase inhibitors, and the second a set of 101 437 compounds from an in-house enzyme assay. We compare the performance of binary kernel discrimination with a simple procedure which we call "merged similarity search", and also with a feedforward neural network. Binary kernel discrimination is shown to perform robustly with varying quantities of training data and also in the presence of noisy data. We conclude by highlighting the importance of the judicious use of general pattern recognition techniques for compound selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号