首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thermal transport properties of four-terminal graphene nano-junctions (FGNJs) consisting of semi-infinite armchair-edged nanoribbon and zigzag-edged nanoribbon were calculated. The thermal transport in FGNJs is sensitive to their geometric shape. The thermal conductance of FGNJs depends on the width of semi-infinite graphene nanoribbons and center region. These thermal transport phenomena can be explained by analyzing the phonon transmission coefficient. Compared with previous thermal rectifiers, reverse modulation can be obtained by changing the width of the thermal terminal. The results provide significant physical models and theoretical validity in designing the thermal devices based on the graphene nano-junctions.  相似文献   

2.
曾永昌  田文  张振华 《物理学报》2013,62(23):236102-236102
利用基于密度泛函理论的第一性原理方法,研究了内边缘氧饱和的周期性凿洞石墨烯纳米带(G NR)的电子特性. 研究结果表明:对于凿洞锯齿形石墨烯纳米带(ZGNRs),在非磁性态时不仅始终为金属,且金属性明显增强;反铁磁态(AFM)时为半导体的ZGNR,凿洞后可能成为金属;但铁磁态(FM)为金属的ZGNR,凿洞后一般变为半导体或半金属. 而对于凿洞的扶手椅形石墨烯(AGNRs),其带隙会明显增加. 深入分析发现:这是由于氧原子对石墨烯纳米带边的电子特性有重要的影响,以及颈次级纳米带(NSNR)及边缘次级纳米带(ESNR)的不同宽度及边缘形状(锯齿或扶手椅形)能呈现出不同的量子限域效应. 这些研究对于发展纳米电子器件有重要的意义. 关键词: 石墨烯纳米带 纳米洞 内边缘氧饱和 电子特性  相似文献   

3.
Using nonequilibrium Green?s functions in combination with the density functional theory, we investigated the electronic transport behaviors of zigzag graphene nanoribbon (ZGNR) heterojunctions with different edge hydrogenations. The results show that electronic transport properties of ZGNR heterojunctions can be modulated by hydrogenations, and prominent rectification effects can be observed. We propose that the edge dihydrogenation leads to a blocking of electronic transfer, as well as the changes of the distribution of the frontier orbital at negative/positive bias might be responsible for the rectification effects. These results may be helpful for designing practical devices based on graphene nanoribbons.  相似文献   

4.
By applying non-equilibrium Green's functions (NEGF) in combination with tight-binding (TB) model, we investigate and compare the electronic transport properties of H-terminated zigzag graphene nanoribbon (H/ZGNR) and O-terminated ZGNR/H-terminated ZGNR (O/ZGNR–H/ZGNR) heterostructure under finite bias. Moreover, the effect of width and symmetry on the electronic transport properties of both models is also considered. The results reveal that asymmetric H/ZGNRs have linear IV characteristics in whole bias range, but symmetric H-ZGNRs show negative differential resistance (NDR) behavior which is inversely proportional to the width of the H/ZGNR. It is also shown that the IV characteristic of O/ZGNR–H/ZGNR heterostructure shows a rectification effect, whether the geometrical structure is symmetric or asymmetric. The fewer the number of zigzag chains, the bigger the rectification ratio. It should be mentioned that, the rectification ratios of symmetric heterostructures are much bigger than asymmetric one. Transmission spectrum, density of states (DOS), molecular projected self-consistent Hamiltonian (MPSH) and molecular eigenstates are analyzed subsequently to understand the electronic transport properties of these ZGNR devices. Our findings could be used in developing nanoscale rectifiers and NDR devices.  相似文献   

5.
《Physics letters. A》2020,384(26):126709
With the multi-functional molecular device based on graphene nanoribbon being deeply studied in experiment, the zigzag-edged graphene device is still worth to investigate. Employing the ab-initio method, the spin transport properties have been studied for the nanojunctions consisting of a p-phenylene vinylene (PPV) molecule sandwiched between two-probe leads of zigzag-edged graphene nanoribbons (ZGNRs). A series of obvious electromagnetic transmission functionalities, including spin switching, negative differential resistance (NDR), dual spin-filtering, magnetoresistance and spin-diode behaviors, are numerically referred in the proposed molecular junction within spin parallel or antiparallel configurations. The performance of switching and double spin filtering can be explained by the transport spectra or total transmission pathways. Besides, the rectification effect is due to the asymmetry spatial distribution of the local density of states as well as the corresponding coupling between the PPV molecule and leads. It is expected that the designed models can be ideal candidate for future spintronic device.  相似文献   

6.
Electronic and transport properties of boron-doped graphene nanoribbons   总被引:4,自引:0,他引:4  
We report a spin polarized density functional theory study of the electronic and transport properties of graphene nanoribbons doped with boron atoms. We considered hydrogen terminated graphene (nano)ribbons with width up to 3.2 nm. The substitutional boron atoms at the nanoribbon edges (sites of lower energy) suppress the metallic bands near the Fermi level, giving rise to a semiconducting system. These substitutional boron atoms act as scattering centers for the electronic transport along the nanoribbons. We find that the electronic scattering process is spin-anisotropic; namely, the spin-down (up) transmittance channels are weakly (strongly) reduced by the presence of boron atoms. Such anisotropic character can be controlled by the width of the nanoribbon; thus, the spin-up and spin-down transmittance can be tuned along the boron-doped nanoribbons.  相似文献   

7.
用基于密度泛函理论的原子紧束缚方法计算研究单层石墨烯纳米圆片和纳米带的电子结构,并结合第一原理和非平衡函数法计算量子输运特性.通过电子能态和轨道密度分布研究纳米碳原子层的电子成键状态,结合电子透射谱、电导和电子势分布分析电子散射与输运机制.石墨烯纳米带和纳米圆片分别呈现金属和半导体的能带特征,片层边缘上电极化分别沿垂直和切向方向,电子电导出现较大的差异,来源于石墨烯纳米圆片边缘的突出碳原子环对电子的强散射.石墨烯纳米带的电子透射谱表现为近似台阶式变化并在费米能级处存在弹道电导峰,而石墨烯纳米圆片的电子能带和透射谱在费米能级处开口并且因量子限制作用呈现更加离散的多条高态密度窄能带和尖锐谱峰.  相似文献   

8.
Quantum interference plays an important role in tuning the transport property of nano-devices. Using the non-equilibrium Green's Function method in combination with density functional theory, we investigate the influence to the transport property of a CO molecule adsorbed on one edge of a zigzag graphene nanoribbon device. Our results show that the CO molecule-adsorbed zigzag graphene nanoribbon devices can exhibit the Fano resonance phenomenon. Moreover, the distance between CO molecules and zigzag graphene nanoribbons is closely related to the energy sites of the Fano resonance. Our theoretical analyses indicate that the Fano resonance would be attributed to the interaction between CO molecules and the edge of the zigzag graphene nanoribbon device, which results in the localization of electrons and significantly changes the transmission spectrum.  相似文献   

9.
First principles calculations have been performed to investigate the electronic structures and transport properties of defective graphene nanoribbons (GNRs) in the presence of pentagon-octagon-pentagon (5-8-5) defects. Electronic band structure results reveal that 5-8-5 defects in the defective zigzag graphene nanoribbon (ZGNR) is unfavorable for electronic transport. However, such defects in the defective armchair graphene nanoribbon (AGNR) give rise to smaller band gap than that in the pristine AGNR, and eventually results in semiconductor to metal-like transition. The distinct roles of 5-8-5 defects in two kinds of edged-GNR are attributed to the different coupling between π? and π subbands influenced by the defects. Our findings indicate the possibility of a new route to improve the electronic transport properties of graphene nanoribbons via tailoring the atomic structures by ion irradiation.  相似文献   

10.
In the study, an improved superconducting heterojunction is made up of a zigzag graphene nanoribbon, which is patterned by a triangle and supports localized edge mode. Since all the localized edge modes stem from a pattern operation, the structure features of the pattern exert an enormous function on the coherent quantum transport. Especially, the patterned modes can enhance the Andreev reflection largely both in the ferromagnetic nanoribbon edge and the antiferromagnetic nanoribbon edge. The spin resolved zero bias conductances, in sharp contrast to its counterpart in the infinite width superconducting heterojunction, exhibit the different dependence on the patterned ferromagnetic interaction.  相似文献   

11.
We apply the nonequilibrium Green's function method based on density functional theory to investigate the electronic and transport properties of waved zigzag and armchair graphene nanoribbons. Our calculations show that out-of-plane mechanical deformations have a strong influence on the band structures and transport characteristics of graphene nanoribbons. The computed I-V curves demonstrate that the electrical conductance of graphene nanoribbons is significantly affected by deformations. The relationship between the conductance and the compression ratio is found to be sensitive to the type of the nanoribbon. The results of our study indicate the possibility of mechanical control of the electronic and transport properties of graphene nanoribbons.  相似文献   

12.
《Physics letters. A》2020,384(34):126852
In this work, electronic structures and spin transport characteristics of SiC zigzag nanoribbons with defects have been studied by spin-polarized first-principles calculations. It is found that the transport channel of the zigzag SiC nanoribbon device in parallel configurations is located in the edge of nanoribbons. The spin currents can be turned on or off by specific edge defects. As to the antiparallel configuration, all the SiC nanoribbon devices exhibit a perfect dual spin filtering effect, which is immune to the position of defects. By transmission spectra calculations, the corresponding mechanisms of these peculiar effects were explained. The results from this work might indicate a promising pathway for developing spin filters with SiC nanoribbons.  相似文献   

13.
By using the first-principles calculations, the electronic properties of graphene nanoribbon (GNR) doped by boron/nitrogen (B/N) bonded pair are investigated. It is found that B/N bonded pair tends to be doped at the edges of GNR and B/N pair doping in GNR is easier to carry out than single B doping and unbonded B/N co-doping in GNR. The electronic structure of GNR doped by B/N pair is very sensitive to doping site besides the ribbon width and chirality. Moreover, B/N pair doping can selectively adjust the energy gap of armchair GNR and can induce the semimetal-semiconductor transmission for zigzag GNR. This fact may lead to a possible method for energy band engineering of GNRs and benefit the design of graphene electronic device.  相似文献   

14.
王志勇  胡慧芳  顾林  王巍  贾金凤 《物理学报》2011,60(1):17102-017102
本文采用基于密度泛函理论的第一性原理对zigzag型石墨烯纳米带中含有不同Stone-Wales缺陷的电子结构特性和光学性能进行研究. 考虑了两种模型:不计电子自旋和考虑电子自旋的情况.研究发现:不计电子自旋情况下,含对称Stone-Wales缺陷的石墨烯纳米带在缺陷区域出现了凹凸不平的折皱构型,两种不同的Stone-Wales缺陷都引起了电荷的重新分布.考虑电子自旋时,Stone-Wales缺陷的引入对石墨烯纳米带自旋密度有显著影响,也引起了不同自旋的电子态密度的变化.进一步研究了纳米带的光学性能,发现 关键词: 石墨烯纳米带 Stone-Wales缺陷 电子结构 光学性能  相似文献   

15.
We make use of ab initio density functional theory calculation to explore the electronic and transport properties of zigzag-edged graphene nanoribbon (ZGNR) with peculiar designed electronic transport channels by tailoring the atomic configuration of the nanostructure. Tailoring the atomic structure has significant influences on the electronic transport of the defective nanostructure, and eventually the metal-semiconducting transition are identified with the increasing number of missing atoms. Our results demonstrate that pre-designed graphene nanoribbon by selective tailoring with high precision is expected to be served as the basic component for nanoelectronic device.  相似文献   

16.
扶手椅型石墨纳米带的双空位缺陷效应研究   总被引:1,自引:0,他引:1       下载免费PDF全文
采用基于密度泛函理论的第一性原理电子结构和输运性质计算,研究了扶手椅型石墨纳米带(具有锯齿边缘)的双空位缺陷效应.研究发现:双空位缺陷的存在并没有改变石墨纳米带的金属特性,但改变了费米面附近的能带结构.同时,双空位缺陷的取向对石墨纳米带的输运性质有很重要的影响.对于奇数宽度的纳米带,斜向双空位缺陷使得石墨带导电性能减弱,而垂直双空位能基本保留原有的线性伏安特性,导电性能降低较少;对于偶数宽度的纳米带,斜向双空位缺陷会使石墨带导电性能明显增强,而垂直双空位缺陷则具有完整石墨带的输运性质. 关键词: 石墨纳米带 585双空位缺陷 电子结构 输运性质  相似文献   

17.
We have studied the electronic structures of arsenene nanoribbons with different edge passivations by employing first-principle calculations. Furthermore, the effects of the defect in different positions on the transport properties of arsenene nanoribbons are also investigated. We find that the band structures of arsenene nanoribbons are sensitive to the edge passivation. The current-voltage characteristics of unpassivated and O-passivated zigzag arsenene nanoribbons exhibit a negative differential resistance behavior, while such a peculiar phenomenon has not emerged in the unpassivated and O-passivated armchair arsenene nanoribbons. The vacant defects on both top and bottom edges in unpassivated armchair arsenene nanoribbon can make its current-voltage characteristic also present a negative differential resistance behavior. After expanding the areas of the top and bottom defects in unpassivated armchair arsenene nanoribbon, the peak-to-valley ratio of the negative differential resistance behavior can be enlarged obviously, which opens another way for the application of arsenene-based devices with a high switching ratio.  相似文献   

18.
石墨烯纳米带电子结构的紧束缚法研究   总被引:2,自引:0,他引:2       下载免费PDF全文
胡海鑫  张振华  刘新海  邱明  丁开和 《物理学报》2009,58(10):7156-7161
在推导出的一般复式格子的π电子紧束缚能量色散关系的基础上,通过假定石墨烯纳米带的电子横向限制势为无穷大硬壁势,导出石墨烯纳米带的能量色散关系及石墨烯纳米带或为金属或为半导体的条件.结果表明:石墨烯纳米带的电子结构与其几何构型(对称性及宽度)密切相关,所以通过控制几何构型,可将其调制成金属或不同带隙的半导体.这意味着石墨烯纳米带对于发展新型纳米器件具有重要意义. 关键词: 石墨烯纳米带 复式格子 紧束缚模型 电子结构  相似文献   

19.
We report a first principles calculation to investigate the electron transport properties of defected armchair graphene nanoribbon (AGNR) influenced by Stone-Wales (SW) defect. The SW defect is found to be able to effectively influence the electronic structure of the defected AGNRs, and their electron transport behaviors can exhibit prominent differences depending on the symmetry of the nanostructured morphology. Moreover, our simulations have revealed that the introducing of the SW defect could be favorable for the electron transport of the defective AGNR. Our investigation has confirmed the possibility of tuning the electron transport of graphene nanoribbon by introducing a topological defect, which could be helpful to extending the field of applications for graphene nanoribbon-based nanodevices.  相似文献   

20.
It was recently reported that a kind of graphene line defect can be fabricated in a controllable experimental way. In the present work we theoretically investigate the band structure and the electronic transport properties of a graphene superlattice formed by embedding periodically line defects in the graphene lattice. Based on the calculated results, we suggest that such a superlattice can be used as a quantum wire array which can carry much larger current than a single graphene nanoribbon. A remarkable advantage of this superlattice over other quantum wires is that the electronic transport in it is insensitive to scattering effects except that the scattering potential range is smaller than the graphene lattice constant. Moreover, we find that the anisotropy of the Dirac cone presented in this superlattice has a nontrivial influence on the universal minimal conductivity and the sub-Poissonian shot noise of graphene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号