首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
周廉淇  张姣  田芳  张养军  钱小红 《色谱》2013,31(4):355-361
针对传统溶液酶解存在的酶解时间较长、酶自切物干扰以及蛋白酶不能重复使用等缺陷,通过电子转移生成催化剂的原子转移自由基聚合法修饰银丝,并以其为载体制备了一种新型的固定化酶反应器。用质谱考察了银丝固定化酶反应器(SW-Trypsin)的酶解效率、重复性和回收率。结果表明:绒毛状聚合物修饰的SW-Trypsin的酶解效率较高,酶解标准蛋白牛血清白蛋白(BSA)20 min后,肽段的氨基酸序列覆盖率可达93%,高于传统溶液酶解方法酶解16 h所得79%的覆盖率。使用该固定化酶反应器于一个月内8次酶解BSA所得的氨基酸序列覆盖率在89%到97%之间,平均覆盖率为94%,显示出良好的稳定性。另外,该固定化酶反应器酶解马心肌红蛋白(MYO)的回收率为87.67%。最后,用SW-Trypsin酶解腾冲嗜热菌全蛋白20 min,所鉴定到的氨基酸序列覆盖率和蛋白数量与同样条件下溶液酶解16 h的结果接近,且零漏切位点肽段的比例更高。加之容易分离的优点,SW-Trypsin在蛋白质组学的应用中具有良好的前景。  相似文献   

2.
对蛋白质全序列进行测定, 有助于分析蛋白质的结构, 揭示蛋白质的生物学功能. 针对目前基于质谱的蛋白质测序流程中使用特异性蛋白酶酶解产生的肽段种类少、重叠度低、序列拼接困难等问题, 发展了一种基于非特异性蛋白酶连续酶解的蛋白质全序列测定方法. 构建了连续酶解装置, 并使用多种非特异性蛋白酶对蛋白质进行连续酶解. 利用非特异性蛋白酶酶解位点的非特异性、不同的酶解时间以及不同种类蛋白酶酶解产生肽段的互补性, 提高蛋白质酶解肽段的种类和重叠度, 并发展了蛋白质序列拼接算法对液相色谱质谱联用(LC-MS/MS)和从头测序获得的肽段序列进行拼接. 将此方法应用于牛血清白蛋白和单克隆抗体赫赛汀的全序列测定, 在不考虑亮氨酸和异亮氨酸的情况下, 对牛血清白蛋白和赫赛汀轻链的测序准确度达到100%, 赫赛汀重链的测序准确度为99.7%.  相似文献   

3.
采用盐酸水解、邻苯二甲醛-氯甲酸芴甲酯(OPA-FMOC)柱前衍生反相高效液相色谱法测定了经碱性蛋白酶脱蛋白处理后的天然胶乳中可溶性蛋白质的氨基酸含量。从16种氨基酸的变化考察了所选酶对乳胶中可溶性蛋白质的水解性能,以氨基酸总量变化评价脱蛋白的效果。结果表明,所选用的碱性蛋白酶对胶乳中的可溶性蛋白的肽键都能水解,在水解过程中蛋白质的氨基酸的组成是变化的。该法对胶乳中可溶性蛋白质的检出限达1.5mg/L(进样5μL,S/N=2),结果不受蛋白质中氨基酸组成变化的影响。对牛血清白蛋白的氨基酸组成分析结果表明,该法准确度高。  相似文献   

4.
高效液相色谱法在脱蛋白天然胶乳研究中的应用   总被引:4,自引:0,他引:4  
采用盐酸水解、邻苯二甲醛- 氯甲酸芴甲酯(OPA- FMOC) 柱前衍生反相高效液相色谱法测定了经碱性蛋白酶脱蛋白处理后的天然胶乳中可溶性蛋白质的氨基酸含量。从16 种氨基酸的变化考察了所选酶对乳胶中可溶性蛋白质的水解性能, 以氨基酸总量变化评价脱蛋白的效果。结果表明, 所选用的碱性蛋白酶对胶乳中的可溶性蛋白的肽键都能水解, 在水解过程中蛋白质的氨基酸的组成是变化的。 该法对胶乳中可溶性蛋白质的检出限达1 .5 mg/ L( 进样5 μL, S/ N= 2) , 结果不受蛋白质中氨基酸组成变化的影响。 对牛血清白蛋白的氨基酸组成分析结果表明, 该法准确度高。  相似文献   

5.
多酶复合水解微波加热制备小分子大豆肽   总被引:4,自引:0,他引:4  
以水解度和AN为指标,确定了微波加热条件下,三种单酶(碱性蛋白酶、中性蛋白酶、酸性蛋白酶)水解大豆蛋白的最佳工艺条件及三种酶复合水解的加酶顺序,将大豆蛋白最大限度的分解为小分子大豆多肽和氨基酸。毛细管电泳实验表明:多酶复合水解优于单酶。  相似文献   

6.
胰蛋白酶水解全酪蛋白反应过程中的分析   总被引:9,自引:1,他引:9  
 将高效凝胶排阻 (HPSEC)技术与水解度 (DH)概念相结合 ,对酪蛋白 胰蛋白酶水解体系的酶解反应过程进行分析 ,得到定量表征复杂酶解反应进程和不同DH值时多样性酶解产物相对分子质量分布的二维图线 ;依据蛋白质结构信息 ,结合HPSEC实验谱图 ,对胰蛋白酶作用于酪蛋白时的酶解断裂位点进行剖析 ,初步推断反应历程 ,并得到理论酶解肽段的相对分子质量分布图及酶解物中活性多肽酪蛋白磷酸肽 (CPPs)肽谱。  相似文献   

7.
将高效凝胶排阻 (HPSEC)技术与水解度 (DH)概念相结合 ,对酪蛋白 胰蛋白酶水解体系的酶解反应过程进行分析 ,得到定量表征复杂酶解反应进程和不同DH值时多样性酶解产物相对分子质量分布的二维图线 ;依据蛋白质结构信息 ,结合HPSEC实验谱图 ,对胰蛋白酶作用于酪蛋白时的酶解断裂位点进行剖析 ,初步推断反应历程 ,并得到理论酶解肽段的相对分子质量分布图及酶解物中活性多肽酪蛋白磷酸肽 (CPPs)肽谱。  相似文献   

8.
张姣  周廉淇  田芳  张养军  钱小红 《色谱》2013,31(2):102-110
研究了以不同粒径的磁性颗粒为载体的固定化酶反应器在蛋白质酶解过程中,其粒径大小对团聚、酶解效率和漏切位点等的影响。实验结果表明,纳米级颗粒的酶负载量为亚微米级的3.5倍左右。但当酶固定量相同时,酶解效率基本相当。而在一定程度上加大磁性颗粒的粒径后,团聚现象得到明显改善。选择磁性载体粒径为20 nm的固定化酶反应器,对其性能进一步考察。结果显示胰蛋白酶与牛血清白蛋白(BSA)的质量比为1:1时,即能于1 min内实现快速酶解;当酶解10 min时,其零漏切位点肽段数和蛋白质序列覆盖率基本达到稳定,并明显优于溶液酶解水平。通过对漏切位点的统计分析比较,发现固定化酶解与溶液酶解时的漏切位点规律基本类似。因此,采用不同粒径磁性载体制备的固定化酶反应器均可在蛋白质组学研究中提供快速、高效的酶解。  相似文献   

9.
倪莉  陶冠军  戴军  王璋  许时婴 《色谱》2001,19(3):222-225
 可溶性丝素粉末经碱性蛋白酶Alcalase水解后 ,其酶解产物对血管紧张素转化酶 (ACE)的活性有很强的抑制作用。采用凝胶过滤色谱SephadexG 15和反相高效液相色谱 (RP HPLC)对水解度为 2 0 %的酶解产物进行分离纯化 ,利用质谱鉴定其中一种ACE抑制剂是肽 ,其结构为Gly Tyr。  相似文献   

10.
位点特异性糖链结构的解析,是糖蛋白质结构分析面临的巨大挑战。Pronase E蛋白水解酶,能够降解糖蛋白或糖肽中大部分的氨基酸序列,而保留糖链与少量氨基酸的序列,与色谱、质谱分析等联用,可以实现糖链结构的鉴定,同时,保留的氨基酸序列可以辅助实现修饰位点的识别,两者结合,可以获取位点特异性糖链结构的信息。但Pronase E酶解的缺点是,酶解效率较低,常需要较高浓度的蛋白酶。本实验将Pronase E固定化在基质上,固定化后的Pronase E具备较高的局部浓度,从而实现目标糖蛋白的快速高效酶解。采用核糖核酸酶B作为标准糖蛋白,优化了Pronase E酶切的方案,包括酶切时蛋白与酶的用量比、酶切时间、固定化Pronase E酶的有效贮存时间等;同时优化选择了糖链的富集方法,并对于基质辅助激光解吸飞行时间质谱分析中,糖链适合的基质进行对比选择,从而获得更好的糖链谱图及更为丰富的糖链结构信息。  相似文献   

11.
In this investigation, the structure, stability, and orientation of bovine serum albumin (BSA) adsorbed onto silica particles were studied using differential scanning calorimetry (DSC) and limited proteolysis in combination with mass spectrometry (MS). DSC gave information on the overall structural stability of BSA while limited proteolysis was used to probe the accessibility of enzymatic cleavage sites, thereby yielding information on the orientation and structure of BSA adsorbed to silica surfaces. Thermal investigation of BSA in various buffers, both free in solution and in the adsorbed state, showed that solutes that surround the protein played an important role with respect to the overall structural stability and the structural heterogeneity of BSA. Limited proteolysis with trypsin and chymotrypsin indicated that BSA in the adsorbed state is oriented with domain 2 facing the silica surface. Also, upon adsorption, no additional cleavage sites were exposed. The combination of the results presented in this study implied that BSA molecules adsorbed onto silica particles were significantly reduced in their structural stability, but not to an extent that internal residues within the native structure became fully exposed to the solution.  相似文献   

12.
Manabe T  Jin Y 《Electrophoresis》2005,26(1):257-267
In the course of searching methods to extract proteins from Coomassie blue-stained polyacrylamide gels, we found proteins are extracted in relatively high recovery when the gel pieces are soaked in alkaline solutions. However, alkaline conditions are known to cause decomposition of proteins, especially peptide bond cleavage and disulfide degradation. We studied the effects of alkaline on two purified proteins, chicken insulin and bovine alpha-lactalbumin, both containing four disulfide bonds in their structure. The process of covalent bond cleavage was traced by analyzing the mass spectra of the proteins using matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS). When the proteins are kept at pH 13 in the presence of 0.1% dithithreitol (DTT), peptide bonds at the C-terminal side of asparaginyl residues are preferably cleaved producing succinimides, whereas cysteinyl residues are not decomposed. In the absence of DTT, the disulfide bonds of the proteins are decomposed by alkaline and the cleavage of the peptide bonds are less obvious, possibly because the conformation of the proteins are partially retained until the full decomposition of disulfide bonds. These results identified for the first time the cleavage sites of proteins under alkaline treatment and further suggested the general tendency of the reactions, both in the presence and absence of DTT.  相似文献   

13.
Enzyme selectivity is introduced as a quantitative parameter to describe the rate at which individual cleavage sites in a protein substrate are hydrolyzed relative to other cleavage sites. Whey protein isolate was hydrolyzed by Bacillus licheniformis protease, which is highly specific for Glu and Asp residues. The molar concentration of all peptides (58) from β-lactoglobulin formed during hydrolysis was determined from the UV214 signal. The quality of identification and quantification of the peptides were described by newly defined parameters: the peptide sequence coverage (on average 94 %) and the molar sequence coverage (on average 75 %). The selectivity was calculated from the rate of hydrolysis of each cleavage site, and showed differences of up to a factor of 5,000. The ability to quantitatively discriminate the enzyme preference towards individual cleavage sites is considered essential to the understanding of enzymatic protein hydrolysis.   相似文献   

14.
Photochemical reagents that cleave proteins at specific sites (photoproteases) are useful for studying protein structure and protein-ligand interactions. PolyammineCo(III) complexes are tested here as photochemical probes to cleave proteins. Irradiation of a mixture of lysozyme, a model protein, and polyammineCo(III) complexes resulted in the facile cleavage of the peptide backbone. Photocleavage yielded two fragments of molecular weights 10.6 and 3.7 kDa, and these masses sum to the molecular mass of lysozyme (14.3 kDa). No cleavage was detected in the absence of the metal complex, in the dark, or upon irradiation at wavelengths of >420 nm. The photocleavage yield increased with irradiation time and with the concentrations of the metal complex and the protein. N-terminal sequencing of the 10.6 kDa fragment indicated residues that are identical to the N-terminus of lysozyme, and sequencing of the 3.7 kDa fragment indicated Val-Ala-Trp-Arg, an internal sequence of lysozyme. From the known primary sequence of lysozyme and the sequencing data, the cleavage site was assigned to Trp108-Val109. Molecular modeling indicates that the observed cleavage site is within few angstroms from the proposed metal binding site at Glu35-Asp52. This is the first report of the successful photocleavage of proteins, with high selectivity, by transition metal complexes. This novel observation can facilitate the rational design of transition metal complexes for the photochemical footprinting of metal binding sites on proteins.  相似文献   

15.
Strong chiral discrimination and site-selective photocleavage of two model proteins, lysozyme and bovine serum albumin (BSA), by new pyrenyl probes are reported here. The enantiomeric pyrenyl probes D-phenylalanine-1(1-pyrene)methylamide (PMA- D-Phe) and L-phenylalanine-1(1-pyrene)methylamide (PMA- l-Phe) were synthesized by coupling the carboxyl function of D-phenylalanine or L-phenylalanine with the amino group of 1(1-pyrene)methylamine. Binding affinities of the two enantiomers with the proteins were quantitated in absorption titrations. BSA indicated 10-fold selectivity for PMA- D-Phe, and the binding constants for the L- and D-enantiomers were 3.8 x 10(5) and 4.0 x 10(6) M(-1), respectively. Lysozyme, similarly, indicated a 6-fold preference for PMA- D-Phe with binding constants of 3.3 x 10 (5) and 2.0 x 10(6) M(-1) for the L- and D-isomers, respectively. Such strong chiral discrimination illustrates the key role of the chiral center of the probe (Phe) in the binding interactions. The enantiomers were tested to examine how the chiral discrimination for their binding influences reactivity toward protein photocleavage. Irradiation of the probe-protein complexes, at 342 nm in the presence of hexammine cobalt(III) chloride, resulted in the cleavage of the protein backbone. Photocleavage did not proceed in the dark or in the absence of the pyrenyl probes. Both enantiomers indicated low reactivity with BSA (<5% yield), while large photocleavage yields ( approximately 57%) have been noted with lysozyme. This lysozyme photocleavage yield is a significant improvement over previous reports. However, both enantiomers cleaved lysozyme at the same location between Trp108-Val109, despite the strong chiral selectivity for binding. H-atom abstraction from Trp 108, accessible from the active site cleft, could initiate the observed peptide bond cleavage.  相似文献   

16.
A conductometric enzyme biosensor using proteinase K was developed and then tested to relate its electrical signal to the number of proteinase K hydrolysis sites in bovine serum albumin (BSA) and angiotensin, a ten amino acid peptide, with one cleaving site.The conductometric sensor presents a large linear range of response for BSA and angiotensin ranging from 0.5 to 8 mg/l and from 4 to 8 mg/l, respectively. For a same tested concentration (mg/l), the response for native BSA is 12 times higher than for angiotensin. Aspartam was used as negative test and no response was obtained with the proteinase K biosensor. The conductometric sensor permitted also to detect difference on enzyme activity on native and non-native BSA, a response three times higher was obtained for non-native BSA.  相似文献   

17.
To design artificial proteases that cleave peptide backbones of a wide range of proteins at selected sites, artificial active sites comprising the Cu(II) complex of cyclen (Cu(II)Cyc) and aldehyde group were synthesized on a cross-linked polystyrene. The aldehyde group was employed as the binding site in view of its ability of reversible formation of imine bonds with epsilon-amino groups of Lys residues exposed on the surface of proteins and Cu(II)Cyc as the catalytic group for peptide hydrolysis. The two polymeric artificial metalloproteases synthesized in the present study cleaved all of the protein substrates examined (myoglobin, gamma-globulin, bovine serum albumin, human serum albumin, lysozyme, and ovalbumin), manifesting saturation kinetic behavior. At 50 degrees C and pH 9.0 or 9.5, K(m) was (1.3-22) x 10(-)(4) M, comparable to those of natural proteases, and k(cat) was (6.0-25) x 10(-)(4) s(-)(1), corresponding to half-lives of 4.6-19 min. Intermediacy of the imine complexes formed between the aldehyde group of the catalyst and the epsilon-amino groups of Lys residues of the substrates was confirmed by the trapping experiment with NaB(OAc)(3)H. MALDI-TOF MS of the proteolytic reaction mixtures revealed formation of various cleavage products. Structures of some of the cleavage products were determined by using carboxypeptidase A and trypsin. Among various cleavage sites thus identified, Gln(91)-Ser(92) and Ala(94)-Thr(95) were the major initial cleavage sites in the degradation of myoglobin by the two catalysts. The selective cleavage of Gln(91)-Ser(92) and Ala(94)-Thr(95) was attributed to general acid assistance in peptide cleavage by Tyr(146) located in proximity to the two peptide bonds. Broad substrate selectivity, high cleavage-site selectivity, and high proteolytic rate are achieved, therefore, by positioning the aldehyde group in proximity to Cu(II)Cyc attached to a cross-linked polystyrene.  相似文献   

18.
The degradation is critical to activation and deactivation of regulatory proteins involved in signaling pathways to cell growth, differentiation, stress responses and physiological cell death. Proteins carry domains and sequence motifs that function as prerequisite for their proteolysis by either individual proteases or the 26S multicomplex proteasomes. Two models for entry of substrates into the proteasomes have been considered. In one model, it is proposed that the ubiquitin chain attached to the protein serves as recognition element to drag them into the 19S regulatory particle, which promotes the unfolding required to its access into the 20S catalytic chamber. In second model, it is proposed that an unstructured tail located at amino or carboxyl terminus directly track proteins into the 26S/20S proteasomes. Caspases are cysteinyl aspartate proteases that control diverse signaling pathways, promoting the cleavage at one or two sites of hundreds of structural and regulatory protein substrates. Caspase cleavage sites are commonly found within PEST motifs, which are segments rich in proline (P), glutamic acid (D), aspartic acid (E) and serine (S) or threonine (T) residues. Considering that N- and C- terminal peptide carrying PEST motifs form disordered loops in the globular proteins after caspase cleavage, it is postulated here that these exposed termini serve as unstructured initiation site, coupling caspase cleavage and ubiquitin-proteasome dependent and independent degradation of short-lived proteins. This could explain the inherent susceptibility to proteolysis among proteins containing PEST motif.  相似文献   

19.
BACKGROUND: Traditional protease inhibitors target the active site of the enzyme. However, since most proteases act on multiple substrates, even the most specific protease inhibitors will affect the levels of a number of different proteins. However, if substrate-targeted inhibitors could be developed, much higher levels of specificity could be achieved. In theory, compounds that bind the cleavage site of a particular substrate could block its interaction with a protease without having any effect on the processing of other substrates of that protease. RESULTS: A model system is presented that demonstrates the feasibility of substrate-targeted inhibition of proteolysis. A peptide selected genetically to bind a 14-residue epitope that encompasses the cleavage site of human pro-IL-1beta was shown to inhibit interleukin-converting enzyme (ICE)-mediated proteolysis of model substrates containing the 14-mer target sequence. However, the peptide had no effect on the cleavage of other ICE substrates with different amino acids flanking the minimal cleavage site. CONCLUSIONS: This study demonstrates the feasibility of substrate-targeted inhibition of proteolysis. More potent compounds must be developed before substrate-targeted inhibitors can be used routinely. Nonetheless, this novel strategy for protease inhibition seems promising for the development of extremely selective molecules with which to manipulate the maturation of many important pro-hormones, -cytokines and -proteins.  相似文献   

20.
In this investigation, methods based on on-probe enzymatic cleavage matrix-assisted laser desorption/ionization time-of-flight mass spectrometric (MALDI-TOF-MS) analyses have been developed, allowing the rapid assignment of phosphorylation sites within phosphoproteins. The procedures involved robotic sample deposition of a phosphoprotein, such as intact bovine β-casein, on stainless steel or gold MALDI plates, on-probe proteolysis with trypsin for 10–180?s at 37°C, on-probe dephosphorylation for 1–10?min at 37°C with alkaline phosphatase, followed by differential mass spectrometry with peptide mass mapping. The dephosphorylation conditions were initially optimized using in-solution tryptic digestion of the phosphoprotein performed in the presence of MS-compatible anionic surfactant sodium 3-[(2-methyl-2-undecyl-1,3-dioxolan-4-yl)methoxy]-1-propanesulfonate. Two methods of trypsin deactivation were investigated, cooling and quenching by acidification, which resulted in the surfactant either staying intact or becoming cleaved, respectively. Since the surfactant had no detrimental effects on dephosphorylation of phosphopeptides, the acidification and neutralization steps were not included in the final analytical method. A protocol, comprising on-probe tandem, surfactant-aided proteolysis for 3?min followed by on-probe dephosphorylation for 10?min was thus established, allowing the rapid identification of location and sequence of phosphopeptides within a phosphoprotein by these procedures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号