首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Zusammenfassung Für die eingefrorene laminare Grenzschichtströmung eines teilweise dissoziierten binären Gemisches entlang einer stark gekühlten ebenen Platte wird eine analytische Näherungslösung angegeben. Danach läßt sich die Wandkonzentration als universelle Funktion der Damköhler-Zahl der Oberflächenreaktion angeben. Für das analytisch darstellbare Konzentrationsprofil stellt die Damköhler-Zahl den Formparameter dar. Die Wärmestromdichte an der Wand bestehend aus einem Wärmeleitungs- und einem Diffusionsanteil wird angegeben und diskutiert. Das Verhältnis beider Anteile läßt sich bei gegebenen Randbedingungen als Funktion der Damköhler-Zahl ausdrücken.
An analytical approximation for the frozen laminar boundary layer flow of a binary mixture
An analytical approximation is derived for the frozen laminar boundary layer flow of a partially dissociated binary mixture along a strongly cooled flat plate. The concentration at the wall is shown to be a universal function of the Damkohler-number for the wall reaction. The Damkohlernumber also serves as a parameter of shape for the concentration profile which is presented in analytical form. The heat transfer at the wall depending on a conduction and a diffusion flux is derived and discussed. The ratio of these fluxes is expressed as a function of the Damkohler-number if the boundary conditions are known.

Formelzeichen A Atom - A2 Molekül - C Konstante in Gl. (20) - c1=1/(2C) Konstante in Gl. (35) - cp spezifische Wärme bei konstantem Druck - D binärer Diffusionskoeffizient - Ec=u 2 /(2hf) Eckert-Zahl - h spezifische Enthalpie - ht=h+u2/2 totale spezifische Enthalpie - h A 0 spezifische Dissoziationsenthalpie - Kw Reaktionsgeschwindigkeitskonstante der heterogenen Wandreaktion - 1= /( ) Champman-Rubesin-Parameter - Le=Pr/Sc Lewis-Zahl - M Molmasse - p statischer Druck - Pr= cpf/ Prandtl-Zahl - qw Wärmestromdichte an der Wand - qcw, qdw Wärmeleitungsbzw. Diffusionsanteil der Wärmestromdichte an der Wand - universelle Gaskonstante - R=/(2Ma) individuelle Gaskonstante der molekularen Komponente - Rex= u x/ Reynolds-Zahl - Sc=/( D) Schmidt-Zahl - T absolute Temperatur - Td=h A 0 /R charakteristische Dissoziationstemperatur - u, v x- und y-Komponenten der Geschwindigkeit - U=u/u normierte x-Komponente der Geschwindigkeit - x, y Koordinaten parallel und senkrecht zur Platte Griechische Symbole - =A/ Dissoziationsgrad - Grenzschichtdicke - 2 Impulsverlustdicke - Damköhler-Zahl der Oberflächenreaktion - =T/T normierte Temperatur - =y/ normierter Wandabstand - Wärmeleitfähigkeit - dynamische Viskosität - , * Ähnlichkeitskoordinaten - Dichte - Schubspannung Indizes A auf ein Atom bezogen - M auf ein Molekül bezogen - f auf den eingefrorenen Zustand bezogen - w auf die Wand bezogen - auf den Außenrand der Grenzschicht bezogen  相似文献   

2.
Zusammenfassung Zur Integration der Eulerschen Bewegungsgleichungen schwerer symmetrischer Kreisel werden der Winkel (t) (Abb. 1) durch (t)=0+(t) ersetzt und in sämtlichen Reihenentwicklungen von abhängiger Funktionen die Potenzen höheren als zweiten Grades vernachlässigt. Dadurch ist es möglich, die Eulerschen Winkel (t), (t) und (t) durch elementare Formeln zu beschreiben und somit sind die wesentlichsten Erscheinungen im Bewegungsablauf der schweren symmetrischen Kreisel einfach zu übersehen.  相似文献   

3.
Experimental investigation and analysis of heat transfer process between a gas-liquid spray flow and the row of smooth cylinders placed in the surface perpendicular to the flow has been performed. Among others, there was taken into account in the analysis the phenomenon of droplets bouncing and omitting the cylinder as well as the phenomenon of the evaporation process from the liquid film surface.In the experiments test cylinders were used, which were placed between two other cylinders standing in the row.From the experiments and the analysis the conclusion can be drawn that the heat transfer coefficients values for a row of the cylinders are higher than for a single cylinder placed in the gasliquid spray flow.
Wärmeübergang an eine senkrecht anf eine Zylinderreihe auftreffende Gas-Flüssigkeits-Sprüh-Strömung
Zusammenfassung Es wurden Messungen und theoretische Analysen des Wärmeübergangs zwischen einer Gas-FlüssigkeitsSprüh-Strömung und den glatten Oberflächen einer Zylinderreihe durchgeführt, die senkrecht zum Sprühstrahl angeordnet waren. Dabei wurde in der Analyse unter anderem das Phänomen betrachtet, daß die Tropfen die Zylinderwand treffen und verfehlen können und daß sich ein Verdampfungsprozeß aus dem flüssigen Film an der Zylinderoberfläche einstellt.Gemessen wurde an einem zwischen zwei Randzylindern befindlichen Zylinder.Die Experimente und die Analyse gestatten die Schlußfolgerung, daß der Wärmeübergangskoeffizient für eine Zylinderreihe höher ist als für einen einzelnen Zylinder in der Sprühströmung.

Nomenclature a distance between axes of cylinders, m - c l specific heat capacity of liquid, J/kg K - c g specific heat capacity of gas, J/kg K - D cylinder diameter, m - g l mass velocity of liquid, kg/m2s - ¯k average volume ratio of liquid entering film to amount of liquid directed at the cylinder in gas-liquid spray flow, dimensionless - k() local volume ratio of liquid entering film to amount of liquid directed at the cylinder in gas-liquid spray flow, dimensionless - L specific latent heat of vaporisation, J/kg - m mass fraction of water in gas-liquid spray flow, dimensionless - M constant in Eq. (9) - p pressure, Pa - p g statical pressure of gas, Pa - p w pressure of gas on the cylinder surface, Pa - p external pressure on the liquid film surface, Pa - r cylindrical coordinate, m - R radius of cylinder, m - T temperature, K, °C - T l, tl liquid temperature in the gas-liquid spray, K, °C - T w,tw temperature of cylinder surface, K, °C - T temperature of gas-liquid film interface, K - U liquid film velocity, m/s - w gas velocity on cylinder surface, m/s - w g gas velocity in free stream, m/s - W l liquid vapour mass ratio in free stream, dimensionless - W liquid vapour mass ratio at the edge of a liquid film, dimensionless - x coordinate, m - y coordinate, m - z complex variable, dimensionless - average heat transfer coefficient, W/m2K - local heat transfer coefficient, W/m2 K - average heat transfer coefficient between cylinder surface and gas, W/m2 K - g, local heat transfer coefficient between cylinder surface and gas, W/m2 K - mass transfer coefficient, kg/m2s - liquid film thickness, m - lg dynamic diffusion coefficient of liquid vapour in gas, kg/m s - pressure distribution function on a cylinder surface - function defined by Eq. (3) - l liquid dynamic viscosity, kg/m s - g gas dynamic viscosity, kg/m s - cylindrical coordinate, rad, deg - l thermal conductivity of liquid, W/m K - g thermal conductivity of gas, W/m K - mass transfer driving force, dimensionless - l density of liquid, kg/m3 - g density of gas, kg/m3 - w shear stress on the cylinder surface, N/m2 - w shear stress exerted by gas at the liquid film surface, N/m2 - air relative humidity, dimensionless - T -T w - w =T wTl Dimensionless parameters I= enhancement factor of heat transfer - m *=M l/Mg molar mass of liquid to the molar mass of gas ratio - Nu g= D/ g gas Nusselt number - Pr g=c g g/g gas Prandtl number - Pr l=clll liquid Prandtl number - ¯r=(r–R)/ dimensionless coordinate - Re g=wgD g/g gas Reynolds number - Re g,max=wg,max D g/g gas Reynolds number calculated for the maximal gas velocity between the cylinders - Sc=m * g/l–g Schmidt number =/R dimensionless film thickness  相似文献   

4.
New asymptotic approaches for dynamical systems containing a power nonlinear term x n are proposed and analyzed. Two natural limiting cases are studied: n 1 + , 1 and n . In the firstcase, the 'small method' (SM)is used and its applicability for dynamical problems with the nonlinearterm sin as well as the usefulness of the SMfor the problem with small denominators are outlined. For n , a new asymptotic approach is proposed(conditionally we call it the 'large method' –LM). Error estimations lead to the followingconclusion: the LM may be used, even for smalln, whereas the SM has a narrow application area. Both of the discussed approaches overlap all values ofthe parameter n.  相似文献   

5.
The peristaltic motion of a non-Newtonian fluid represented by the constitutive equation for a second-order fluid was studied for the case of a planar channel with harmonically undulating extensible walls. A perturbation series for the parameter ( half-width of channel/wave length) obtained explicit terms of 0(2), 0(2Re2) and 0(1Re2) respectively representing curvature, inertia and the non-Newtonian character of the fluid. Numerical computations were performed and compared to the perturbation analysis in order to determine the range of validity of the terms.Presented at the second conference Recent Developments in Structured Continua, May 23–25, 1990, in Sherbrooke, Québec, Canada  相似文献   

6.
In this paper, a method using the mean velocity profiles for the buffer layer was developed for the estimation of the virtual origin over a riblets surface in an open channel flow. First, the standardized profiles of the mixing length were estimated from the velocity measurement in the inner layer, and the location of the edge of the viscous layer was obtained. Then, the virtual origins were estimated by the best match between the measured velocity profile and the equations of the velocity profile derived from the mixing length profiles. It was made clear that the virtual origin and the thickness of the viscous layer are the function of the roughness Reynolds number. The drag variation coincided well with other results.Nomenclature f r skin friction coefficient - f ro skin friction coefficient in smooth channel at the same flow quantity and the same energy slope - g gravity acceleration - H water depth from virtual origin to water surface - H + u*H/ - H false water depth from top of riblets to water surface - H + u*H/ - I e streamwise energy slope - I b bed slope - k riblet height - k + u*k/ - l mixing length - l s standardized mixing length - Q flow quantity - Re Reynolds number volume flow/unit width/v - s riblet spacing - u mean velocity - u* friction velocity = - u* false friction velocity = - y distance from virtual origin - y distance from top of riblet - y 0 distance from top of riblet to virtual origin - y v distance from top of riblet to edge of viscous layer - y + u*y/ - y + u*y/ - y 0 + u*y 0/ - u + u*y/ - shifting coefficient for standardization - thickness of viscous layer=y 0+y - + u*/ - + u*/ - eddy viscosity - ridge angle - v kinematic viscosity - density - shear stress  相似文献   

7.
Zusammenfassung Im Reynoldszahl-Bereich 1,5·104 <Re < 2,6·105 wurden am querangeströmten Kreiszylinder die örtlichen Werte der Wandschubspannung und des statischen Druckes als Funktion des Umfangswinkels gemessen. Diese experimentellen Ergebnisse wurden dazu benutzt, mit Hilfe des Impulssatzes der Grenzschicht die Impulsverlustdicke 2 als Funktion der Lauflänge zu bestimmen. Es zeigt sich, daß bei geeigneter Dimensionsbefreiung der Lauflänge die experimentellen Resultate mit den theoretischen auf ±5% im Mittel übereinstimmen.
Experimental determination of momentum thickness of the circular cylinder in cross flow
In the range of Reynolds numbers 1.5·104 <Re < 2.6·105 local static pressure and skin friction distribution were measured around circular cylinders in cross flow. The experimental data have been used to determine the momentum thickness 2 of the boundary layer as a function of the angle of circumference. Presenting the results in a suitable dimensionless form it can be shown, that experimental results fit the theoretic curve with a scattering of about ±5%.

Bezeichnungen a i Koeffizienten eines Polynoms - c w Widerstandsbeiwert - D m Zylinderdurchmesser - F N Kraft - H 12 Formparameter - h m Höhe des Oberflächenzaunes - L m Zylinderlänge - p N/m2 Druck - p N/m2 Druckdifferenz - U m/s Geschwindigkeit am äußeren Rand der Grenzschicht - U m/s Anströmgeschwindigkeit - u m/s Geschwindigkeitskomponente parallel zur Wand innerhalb der Grenzschicht - x m Koordinate parallel zur Wand (Lauflänge) - y m Koordinate senkrecht zur Wand Griechische Symbole 1 m Verdrängungsdicke - 2 m Impulsverlustdicke - kg/m s dynamische Zähigkeit - v m2/s kinematische Zähigkeit - kg/m3 Dichte - o N/m2 Wandschubspannung - ° Umfangswinkel, gerechnet vom Staupunkt des Zylinders - dimensionslose Lauflängex/D  相似文献   

8.
In this paper the flow is studied of an incompressible viscous fluid through a helically coiled annulus, the torsion of its centre line taken into account. It has been shown that the torsion affects the secondary flow and contributes to the azimuthal component of velocity around the centre line. The symmetry of the secondary flow streamlines in the absence of torsion, is destroyed in its presence. Some stream lines penetrate from the upper half to the lower half, and if is further increased, a complete circulation around the centre line is obtained at low values of for all Reynolds numbers for which the analysis of this paper is valid, being the ratio of the torsion of the centre line to its curvature.Nomenclature A =constant - a outer radius of the annulus - b unit binormal vector to C - C helical centre line of the pipe - D rL - g 1000 - K Dean number=Re2 - L 1+r sin - M (L 2+ 2 r 2)1/2 - n unit normal vector to C - P, P pressure and nondimensional pressure - p 0, p pressures of O(1) and O() - Re Reynolds number=aW 0/ - (r, , s), (r, , s) coordinates and nondimensional coordinates - nonorthogonal unit vectors along the coordinate directions - r 0 radius of the projection of C - t unit tangent vector to C - V r, V , V s velocity components along the nonorthogonal directions - Vr, V, V s nondimensional velocity components along - W 0 average velocity in a straight annulus Greek symbols , curvature and nondimensional curvature of C - U, V, W lowest order terms for small in the velocity components along the orthogonal directions t - r, , s first approximations to V r , V, V s for small - =/=/ - kinematic viscosity - density of the fluid - , torsion and nondimensional torsion of C - , stream function and nondimensional stream function - nondimensional streamfunction for U, V - a inner radius of the annulus After this paper was accepted for publication, a paper entitled On the low-Reynolds number flow in a helical pipe, by C.Y. Wang, has appeared in J. Fluid. Mech., Vol 108, 1981, pp. 185–194. The results in Wangs paper are particular cases of this paper for =0, and are also contained in [9].  相似文献   

9.
Spatial problems involving the electric field in an MHD channel were formulated in [1] with allowance for the electrode potential drop. It was assumed that the electrode layer had a small thickness, so that relationships on the boundary of the layer could be applied to the surface of the electrode. It was assumed that the electrode potential drop ° could be represented as a function of the current density jn at the electrode in the form of a known function ° =f (jn) determined experimentally or deduced from the appropriate electrode-layer theory. An approximate method was then put forward for solving such problems by reducing them to the determination of the electric field from a known distribution of the magnetic field and the gas-dynamic parameters. It was shown that when =°/ E is small (E is the characteristic induced or applied potential difference), the solution can be sought in the form of series in powers of . In the zero-order approximation, the electric field is determined without taking into account the electrode processes. The first approximation gives a correction of the order of . The quantity °, which is present in the boundary conditions on the electrode in the first-order approximation, is determined from the current density calculated in the zero-order approximation.One of the problems discussed in [1] was concerned with the electric current in a channel with one pair of symmetric electrodes. Its solution was found in the first approximation in the form of the integral Keldysh-Sedov formula. In this paper we report an analysis of the solution for ° taken in the form of a step function.  相似文献   

10.
Conclusions The qualitative behavior of the displacement (t) and the radius R(t) during the different phases of the motion is illustrated in the diagram of Fig. 6.1.After the first impact at t = 0 the displacement (t) varies according to (5.2). If the first maximum of (t) is higher than 1 then at time t 1 the graph of (t) intersects the straight line = cand detachment first occurs. In the second phase the dependance of on t is expressed by (5.6). The detachment will end at the instant t 2 when vanishes.The radius R remains equal to R 0 until (t) reaches the critical value 1 = c that is at t = t 1. After t 1, R(t) will decrease according to (4.4) up to its final value 2.A rather unexpected property of the solution is that the greatest elongation is finite for every non-vanishing value of the ratio .To Jerry Ericksen for his 60th birthday  相似文献   

11.
The rapidly forced pendulum equation with forcing sin((t/), where =<0p,p = 5, for 0, sufficiently small, is considered. We prove that stable and unstable manifolds split and that the splitting distanced(t) in the ( ,t) plane satisfiesd(t) = sin(t/) sech(/2) +O( 0 exp(–/2)) (2.3a) and the angle of transversal intersection,, in thet = 0 section satisfies 2 tan/2 = 2S s = (/2) sech(/2) +O(( 0 /) exp(–/2)) (2.3b) It follows that the Melnikov term correctly predicts the exponentially small splitting and angle of transversality. Our method improves a previous result of Holmes, Marsden, and Scheuerle. Our proof is elementary and self-contained, includes a stable manifold theorem, and emphasizes the phase space geometry.  相似文献   

12.
Systematic data on the determination of the aerodynamic characteristics of axisymmetric bodies with a break in the generating line (Fig. 1a, b) in supersonic flow at zero angle of attack are presented in [1, 2, and others]. A characteristic feature of the flow past such bodies is the appearance of an extensive separation zone dec in the region of the break in the generator when the break angle exceeds some minimum value min, which for a turbulent boundary layer depends basically on the Mach number M at the body surface ahead of the separation zone. In this case, compression waves which change into the oblique compression shocks dc and cc, emanate both from the beginning of the separation zone (point c) and from the end of it (point d). These shocks, intersecting at the point c, form the triple shock configuration acd and acc for which we introduce the notationac[c, d]. The maximum value (max) of the generator break angle is limited by the possibility of the existence of an attached compression shock, dc. According to these data a change in the generator break angle for the range minmax of the angle does not disrupt the nature of the flow in the separation zone, but only alters the size of this zone.We shall examine the flow past cones with values of the generator break angles (max) for which the attached shock dc cannot exist.  相似文献   

13.
This paper deals with a systematic procedure for assessment of fluid flow and heat transfer parameters for a single round jet impinging on a concave hemispherical surface. Based on Scholkemeier's modifications of the Karman-Pohlhausen integral method, expressions are derived for evaluation of the momentum thickness, boundary layer thickness and the displacement thickness at the stagnation point. This is followed by the estimation of thermal boundary layer thickness and local heat transfer coefficients. A correlation is presented for the Nusselt number at the stagnation point as a function of the Reynolds number for different non-dimensional distances from the exit plane of the jet to the impingement surface.
Bestimmung des Staupunktes bei der Wärmeübertragung für einen einzelnen Strahl, der auf eine konkave halbkugelige Oberfläche trifft
Zusammenfassung Diese Arbeit beschäftigt sich mit dem systematischen Verfahren der Bewertung von Fluidströmungen und Wärmeübertragungsparametern für einen einzelnen runden Strahl, der auf eine konkave halbkugelförmige Oberfläche trifft. Das Verfahren beruht auf Scholkemeiers Modifikation des Karman-Pohlhausen Integrationsverfahrens. Ausdrücke sind für die Berechnung der Impuls-Dicke, der Grenzschichtdicke und der Verschiebungsdicke am Staupunkt hergeleitet worden. Dies ist aus der Berechnung der thermischen Grenzschichtdicke und des lokalen Wärmeübertragungskoeffizienten abgeleitet worden. Es wird eine Gleichung für die Nusselt-Zahl am Staupunkt als Funktion der Reynolds-Zahl für verschiedene dimensionslose Abstände vom Strahlaustrittspunkt bis zum Auftreffpunkt auf die Oberfläche vorgestellt.

Nomenclature c p specific heat at constant pressure - d diameter of single round nozzle - h 0 heat transfer coefficient at the stagnation point - H distance from the exit plane of the jet to the impingement surface - k thermal conductivity - Nu 0.5 Nusselt number based on impinging jet quantities=h 0.50/k - Nu 0.5, 0 stagnation point Nusselt number=h 0 0,50/k - p pressure - p a ambient pressure - p 0 maximum pressure or stagnation pressure - p(x) static pressure at a distancex from the stagnation point - R radius of curvature of the hemisphere - Re J jet Reynolds number=U Jd/ - Re 0.5 Reynolds number based on impinging jet quantities=u m0 0.50/ - T temperature - T a room temperature - T J jet temperature - T W wall temperature - u velocity component inx andx directions (Fig. 1) - u m jet centerline (or maximum) free jet velocity: external (or maximum) boundary layer velocity aty= m - u m0 arrival velocity defined as the maximum velocity the free jet would have at the plane of impingement if the plane were not there - U J jet exit velocity - x* non-dimensional coordinate starting at the stagnation point=x/2 0.50 - x, y rectangular Cartesian coordinates - y coordinate normal to the wall starting at the wall - ratio of thermal to velocity boundary layer thickness= T/m - 0 ratio of thermal to velocity boundary layer thickness at the stagnation point - * inner layer displacement thickness - 0.50 jet half width at the plane of impingement if the plate were not there - m inner boundary layer thickness atu=u m - Pohlhausen's form parameter - dynamic viscosity - kinematic viscosity=/ - fluid density - momentum thickness - 0 momentum thickness at the stagnation point  相似文献   

14.
Planar Mie scattering visualizations in compressible mixing layers are used to compute the probability density function of a passive scalar. Mixing layer flows with relative Mach numbers of 0.63 and 1.49 are studied. Ethanol condensation is used to generate both scalar transport seeding and product formation seeding. All PDFs exhibit a marching behavior. The condensation process in the product formation seeding is modeled to provide an estimate of the error embedded in the scalar transport PDFs. The mixing efficiency is found to be 0.56 in the product formation experiments, and the overprediction of mixing efficiency by the scalar PDFs is estimated to be 11% based on results from the ethanol condensation model.List of Symbols 291-01 Damköhler number based on - J droplet nucleation rate - k Boltzmann constant - m c molecular mass of ethanol - M r relative Mach number, M r = 2U/(a1 + a2) - N * number of nucleated droplets - p(,) probability density function - P d internal droplet pressure - P m total mixed fluid probability - P sat ethanol saturation partial pressure - P v ethanol vapor partial pressure - r freestream velocity ratio, r=U 2/U1; droplet radius - r * critical nucleation radius - R gas constant for air - 291-2 Reynolds number based on - s freestream density ratio, s = 2/1 - T local static temperature - U 1 high speed freestream velocity - U 2 low speed freestream velocity - U c large structure convection velocity, - U freestream velocity difference, U=U 1–U2 - x streamwise coordinate - y transverse coordinate - mixing layer thickness - i incompressible mixing layer thickness - mixture fraction - similarity variable, = (y–y 0)/ - c condensed phase ethanol density - droplet surface tension  相似文献   

15.
In the present paper an attempt has been made to find out effects of uniform high suction in the presence of a transverse magnetic field, on the motion near a stationary plate when the fluid at a large distance above it rotates with a constant angular velocity. Series solutions for velocity components, displacement thickness and momentum thickness are obtained in the descending powers of the suction parameter a. The solutions obtained are valid for small values of the non-dimensional magnetic parameter m (= 4 e 2 H 0 2 /) and large values of a (a2).Nomenclature a suction parameter - E electric field - E r , E , E z radial, azimuthal and axial components of electric field - F, G, H reduced radial, azimuthal and axial velocity components - H magnetic field - H r , H , H z radial, azimuthal and axial components of magnetic field - H 0 uniform magnetic field - H* displacement thickness and momentum thickness ratio, */ - h induced magnetic field - h r , h , h z radial, azimuthal and axial components of induced magnetic field - J current density - m nondimensional magnetic parameter - p pressure - P reduced pressure - R Reynolds number - U 0 representative velocity - V velocity - V r , V , V z radial, azimuthal and axial velocity components - w 0 uniform suction through the disc. - density - electrical conductivity - kinematic viscosity - e magnetic permeability - a parameter, (/)1/2 z - a parameter, a - * displacement thickness - momentum thickness - angular velocity  相似文献   

16.
The technique to determine by capacitance measurements heat transfer, thermal transport and dielectric properties of fluids introduced recently is now analyzed for a simple system of spherical geometry. The temperature distribution under programmed heat input to a fluid annulus between solid walls is computed by finite difference method for the determination of the capacitance time function of the arrangement. A system of heavy wall structure and heated long enough will produce a capacitance-time curve which is a function of thermal conductivity only. Thermal diffusivity is of influence in thin wall systems. The capacitance change of a heavy wall arrangement is related to the thermal conductivity of the test fluid by a modified Fourier equation. This equation describes the heat flow through the fluid layer but includes the thermal expansion of the solid walls. The change of geometry with T is therefore accounted for. For other multicomposite structures the Fourier equation must be further modified by including the thermal expansion of all materials of the structure and possibly also their compressibilities.
Zusammenfassung Die kürzlich eingeführte Methode der Bestimmung von Wärmeübergang, thermischen Transport und dielektrischen Größen mittels Kapazitäts-Zeit-Messung wird analysiert für ein einfaches kugeliges System. Die Temperaturverteilung in der Flüssigkeit im Kugelspalt zwischen zwei festen Körpern wird für konstante Wärmezufuhr von außen mittels der Differenzmethode bestimmt und daraus die Kapazitäts-Zeit-Funktion ermittelt. Es wird gezeigt, daß die Kapazitäts-Zeit-Kurve nur eine Funktion der Wärmeleitzahl ist für den Fall dickwandiger Anordnungen. Für dünnwandige Systeme wird sie auch abhängig von der Temperaturleitzahl. Es wird eine modifizierte Fourier-Gleichung eingeführt, die den Wärmetransport durch die Flüssigkeit beschreibt, dabei aber die Änderung der Geometrie der Schicht berücksichtigt, die sich wegen der thermischen Ausdehnung der festen Wände bei der Einstellung der Temperaturdifferenz ergibt. Für andere mehrschichtige Körper muß die Fourier-Gleichung weiterhin modifiziert werden durch Berücksichtigung der thermischen Ausdehnungskoeffizienten aller beteiligten Materialien und möglicherweise auch ihrer Kompressibilitäten.

Nomenclature A average cross-sectional area of fluid layer - A coefficient matrix - B matrix defined by Eq. (20) - B0 geometric constant of fluid layer (A/L) at reference temperature - C capacitance of arrangement - Ci, Cr capacitance of layer of fluid i and reference fluid at temperature T - capacitances at reference temperature - CH, cl specific heats of outer and inner wall - FA...FE constants defined in Eqs. (13 ... 17) - L thickness of fluid layer - MH, ML mass of outer and inner wall - P power input to the system - R constant defined by Eq. (24) - T temperature - Tref reference temperature - T (O, t), T (L, t) temperatures of outer and inner wall at time t - T i n , T i+0 n+m temperatures at location i and time n (m=number of t's; 0=number of x's) - T temperature difference across fluid layer - T apparent temperature difference - th, Tl temperature increases of outer and inner wall - Tmax temperature change of system from one to another thermal equilibrium condition a thermal diffusivity - k, ki, kr thermal qonductivity of fluids and of fluid i and reference fluid - q heat flow through fluid layer - rh,rl inner radius of outer wall and outer radius of inner wall - rOH,rOL radii at reference temperature - t time - t time interval - x coordinate - ¯x vector of unknown Ti n+1 - x length interval Greek symbols linear thermal expansion coefficient - H, L linear thermal expansion coefficient of materials of outer and inner wall - dielectric constant - i, ref dielectric constant of fluid i and reference fluid - 0 permittivity of free space - multiplyer of conduction Eq. (7) in finite difference form - time needed to establish quasi-steady state conditions in the system heated by a constant power input In honor of Prof. Dr. E. Schmidt to his 80th Birthday.  相似文献   

17.
T. Dabak  O. Yucel 《Rheologica Acta》1986,25(5):527-533
A method is proposed for determining the shear viscosity behavior of highly concentrated suspensions at low and high shear-rates through the use of a formulation that is a function of three parameters signifying the effects of particle size distribution. These parameters are the intrinsic viscosity [], a parametern that reflects the level of particle association at the initiation of motion and the maximum packing concentration m. The formulation reduces to the modified Eilers equation withn = 2 for high shear rates. An analytical method was used for the calculation of maximum packing concentration which was subsequently correlated with the experimental values to account for the surface induced interaction of particles with the fluid. The calculated values of viscosities at low and high shear-rates were found to be in good agreement with various experimental data reported in literature. A brief discussion is also offered on the reliability of the methods of measuring the maximum packing concentration. r = /0 relative viscosity of the suspension - volumetric concentration of solids - k n coefficient which characterizes a specific effect of particle interactions - m maximum packing concentration - r,0 relative viscosity at low shear-rates - [] intrinsic viscosity - n, n parameter that reflects the level of particle interactions at low and high shear-rates, respectively - r, relative viscosity at high shear-rates - (m)s, (m)i, (m)l packing factors for small, intermediate and large diameter classes - v s, vi, vl volume fractions of small, intermediate and large diameter classes, respectively - si, sl coefficient to be used in relating a smaller to an intermediate and larger particle group, respectively - is, il coefficient to be used in relating an intermediate to a smaller and larger particle group, respectively - ls, li coefficient to be used in relating a larger to a smaller and intermediate particle group, respectively - m0 maximum packing concentration for binary mixtures - m,e measured maximum packing concentration - m,c calculated maximum packing concentration  相似文献   

18.
Summary The propagation of electromagnetic waves is investigated theoretically for a round wave guide, containing a gyroelectrie-gyromagnetic medium with gyroaxis parallel to the guide in the form of a cylindrical shell of thickness, adjacent to the wall of the guide. An equation is set up, permitting to compute the change in the propagation constant due to the presence of the shell, including terms proportional to 2. Assuming only the presence of gyromagnetism, the change 1 of first order in for TE-waves is determined and is found to be the same fpr right- and left-circular polarization. The second order difference 2 + 2 - for the two senses of polarization, however, appears to have a non-vanishing value which, just like 1 can be expressed in terms of the radius of the guide, the frequency, the dielectric constant and the elements of the gyromagnetic permeability tensor which characterize the medium of the shell.  相似文献   

19.
A homogeneous, isotropic cylinder in an equilibrium state of plane strain, whose cross-section is a rectangle R : [0 < y 1 < 2L; 0 < y 2 < h] with h/L 1, is considered. There are no body forces and the long sides are stress free. At y 1 = 0 and y 1 = 2L, there are arbitrary loadings, each statically equivalent to a uniformly distributed tensile or compressive stress c. Within the theory of nonlinear elasticity and with the strains and strain gradients assumed to be sufficiently small (but with no such assumptions on the displacement gradients), it is proved that if (,=1,2) represents the Cauchy stress tensor and the Kronecker delta, then |c11| decays exponentially to zero in R with distance from the nearer end, and the decay constant depends only upon the material but is independent of L.  相似文献   

20.
An improved procedure is proposed to solve the problem of measuring strong birefringence on flowing samples which have a retardation larger than /2 The procedure can be applied to devices which are based on the modulation of the polarization vector with a high-speed rotating half-wave plate. It uses two optical configurations which have different responses to the retardation. By combining the information obtained from the two configurations, one can easily and accurately determine the actual retardation of the sample, irrespective of the quadrant in which the measured retardation is located, provided the sample is isotropic. This technique can also overcome the problem of large errors occurring in the vicinity of = (2m+1)/2 due to the limited sensitivity around these values of . The use of the technique is illustrated with measurements on an isotropic solution of poly(benzyl glutamate) in m-cresol, which is strongly birefringent during shear flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号