首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用水热法合成出NH4Y3F10多孔纳米晶。由于Y3+离子的激发态能量可以转移给具有较高振动能的有机分子,因此这些多孔纳米晶可以作为基质辅助激光解析电离飞行时间质谱的基体材料,用于检测小分子和聚乙二醇。通过与商品化的基体材料(CHCA、DHB)对比,证明NH4Y3F10多孔纳米晶是一种性能优异的基体材料。这种新型基体材料已经成功应用于有机分子、小肽、C60、缺氧诱导因子(HIFs)和聚乙二醇的分子量的检测,显示出这种基体材料具有广泛的应用前景。  相似文献   

2.
A variety of surfactants have been tested as matrix-ion suppressors for the analysis of small molecules by matrix-assisted laser desorption/ionization time-of flight mass spectrometry. Their addition to the common matrix alpha-cyano-4-hydroxycinnamic acid (CHCA) greatly reduces the presence of matrix-related ions when added at the appropriate mole ratio of CHCA/surfactant, while still allowing the analyte signal to be observed. A range of cationic quaternary ammonium surfactants, as well as a neutral and anionic surfactant, was tested for the analysis of phenolics, phenolic acids, peptides and caffeine. It was found that the cationic surfactants, particularly cetyltrimethylammonium bromide (CTAB), were suitable for the analysis of acidic analytes. The anionic surfactant, sodium dodecyl sulfate, showed promise for peptide analysis. For trialanine, the detection limit was observed to be in the 100 femtomole range. The final matrix/surfactant mole ratio was a critical parameter for matrix ion suppression and resulting intensity of analyte signal. It was also found that the mass resolution of analytes was improved by 25-75%. Depth profiling of sample spots, by varying the number of laser shots, revealed that the surfactants tend to migrate toward the top of the droplet during crystallization, and that it is likely that the analyte is also enriched in this surface region. Here, higher analyte/surfactant concentration would reduce matrix-matrix interactions (known to be a source of matrix-derived ions).  相似文献   

3.
Peptide samples derived from enzymatic in‐gel digestion of proteins resolved by gel electrophoresis often contain high amount of salts originating from reaction and separation buffers. Different methods are used for desalting prior to matrix‐assisted laser desorption/ionization (MALDI) mass spectrometry (MS), e.g. reversed‐phase pipette tip purification, on‐target washing, adding co‐matrices, etc. As a suitable matrix for MALDI MS of peptides, α‐cyano‐4‐hydroxycinnamic acid (CHCA) is frequently used. Crystalline CHCA shows the ability to bind peptides on its surface and because it is almost insoluble in acidic water solutions, the on‐target washing of peptide samples can significantly improve MALDI MS signals. Although the common on‐target washing represents a simple, cheap and fast procedure, only a small portion of the available peptide solution is efficiently used for the subsequent MS analysis. The present approach is a combination of the on‐target washing principle carried out in a narrow‐end pipette tip (e.g. GELoader tip) and preconcentration of peptides from acidified solution by passing it through small CHCA crystals captured inside the tip on a glass microfiber frit. The results of MALDI MS analysis using CHCA‐tip peptide preconcentration are comparable with the use of homemade POROS R2 pipette tip microcolumns. Advantages and limitations of this approach are discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Sample pretreatment is key to obtaining good data in matrix‐assisted laser desorption/ionization mass spectrometry imaging (MALDI‐MSI). Although sublimation is one of the best methods for obtaining homogenously fine organic matrix crystals, its sensitivity can be low due to the lack of a solvent extraction effect. We investigated the effect of incorporating a thin film of metal formed by zirconium (Zr) sputtering into the sublimation process for MALDI matrix deposition for improving the detection sensitivity in mouse liver tissue sections treated with olanzapine. The matrix‐enhanced surface‐assisted laser desorption/ionization (ME‐SALDI) method, where a matrix was formed by sputtering Zr to form a thin nanoparticle layer before depositing MALDI organic matrix comprising α‐cyano‐4‐hydroxycinnamic acid (CHCA) by sublimation, resulted in a significant improvement in sensitivity, with the ion intensity of olanzapine being about 1800 times that observed using the MALDI method, comprising CHCA sublimation alone. When Zr sputtering was performed after CHCA deposition, however, no such enhancement in sensitivity was observed. The enhanced sensitivity due to Zr sputtering was also observed when the CHCA solution was applied by spraying, being about twice as high as that observed by CHCA spraying alone. In addition, the detection sensitivity of these various pretreatment methods was similar for endogenous glutathione. Given that sample preparation using the ME‐SALDI‐MSI method, which combines Zr sputtering with the sublimation method for depositing an organic matrix, does not involve a solvent, delocalization problems such as migration of analytes observed after matrix spraying and washing with aqueous solutions as sample pretreatment are not expected. Therefore, ME‐Zr‐SALDI‐MSI is a novel sample pretreatment method that can improve the sensitivity of analytes while maintaining high spatial resolution in MALDI‐MSI.  相似文献   

5.
Cysteine sulfonic acid-containing peptides, being typical acidic peptides, exhibit low response in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. In this study, matrix conditions and the effect of diammonium hydrogencitrate (DAHC) as additive were investigated for ionization of cysteine sulfonic acid-containing peptides in MALDI. A matrix-free ionization method, desorption/ionization on porous silicon (DIOS), was also utilized to evaluate the effect of DAHC. When equimolar three-component mixtures of peptides carrying free cysteine, cysteine sulfonic acid, and carbamidomethyl cysteine were measured by MALDI using a common matrix, alpha-cyano-4-hydroxycinnamic acid (CHCA), no signal corresponding to cysteine sulfonic acid-containing peptide could be observed in the mass spectrum. However, by addition of DAHC to CHCA, the peaks of cysteine sulfonic acid-containing peptides were successfully observed, as well as when using 2,4,6-trihydroxyacetophenone (THAP) and 2,6-dihydroxyacetophenone with DAHC. In the DIOS mass spectra of these analytes, the use of DAHC also enhanced the peak intensity of the cysteine sulfonic acid-containing peptides. On the basis of studies with these model peptides, tryptic digests of oxidized peroxiredoxin 6 were examined as a complex peptide mixture by MALDI and DIOS. In MALDI, the peaks of cysteine sulfonic acid-containing peptides were observed when using THAP/DAHC as the matrix, but this was not so with CHCA. In DIOS, the signal from cysteine sulfonic acid-containing peptides was suppressed; however, the use of DAHC significantly enhanced the signal intensity with an increase in the number of observed peptides and increased signal-to-noise ratio in the DIOS spectra. The results show that DAHC in the matrix or on the DIOS chip decreases discrimination and suppression effects in addition to suppressing alkali-adduct ions, which leads to a beneficial effect on protonation of peptides containing cysteine sulfonic acid.  相似文献   

6.
The performance of a matrix‐assisted laser desorption/ionization (MALDI) ionic liquid matrix (ILM) consisting of α‐cyano‐4‐hydroxycinnamic acid (CHCA) and aniline (ANI) was evaluated to assess whether it could offer possible advantages over conventional matrices. Ultraviolet (UV), Fourier transform infrared (FTIR), nuclear magnetic resonance (NMR) and laser desorption/ionization mass spectrometry (LDI‐MS) experiments were carried out with the aim of confirming the structure of the ANI‐CHCA ILM. Different model analytes such as amino acids, peptides, proteins, lipids, phospholipids, synthetic polymers, and sugars were tested. Mass spectra with similar or improved signal‐to‐noise (S/N) ratio (compared to CHCA) were invariably obtained demonstrating the potential of this ILM as a general purpose matrix. Furthermore, protein identification by peptide mass fingerprinting (PMF) and database search was facilitated compared to CHCA since higher scores and increased sequence coverage were observed. Finally, a complex lipid mixture (i.e. a raw extract of a milk sample) analysed by MALDI‐MS showed improved S/N ratio, a reduced chemical noise and a limited formation of matrix‐clusters. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Degree of ionization (DI) in matrix-assisted laser desorption ionization (MALDI) was measured for five peptides using α-cyano-4-hydroxycinnanmic acid (CHCA) as the matrix. DIs were low 10(-4) for peptides and 10(-7) for CHCA. Total number of ions (i.e., peptide plus matrix) was the same regardless of peptides and their concentration, setting the number of gas-phase ions generated from a pure matrix as the upper limit to that of peptide ions. Positively charged cluster ions were too weak to support the ion formation via such ions. The total number of gas-phase ions generated by MALDI, and that from pure CHCA, was unaffected by the laser pulse energy, invalidating laser-induced ionization of matrix molecules as the mechanism for the primary ion formation. Instead, the excitation of matrix by laser is simply a way of supplying thermal energy to the sample. Accepting strong Coulomb attraction felt by cations in a solid sample, we propose three hypotheses for gas-phase peptide ion formation. In Hypothesis 1, they originate from the dielectrically screened peptide ions in the sample. In Hypothesis 2, the preformed peptide ions are released as part of neutral ion pairs, which generate gas-phase peptide ions via reaction with matrix-derived cations. In Hypothesis 3, neutral peptides released by ablation get protonated via reaction with matrix-derived cations.  相似文献   

8.
A low molecular mass polyester was analyzed by desorption/ionization on porous silicon (DIOS) mass spectrometry. The results were compared with those of matrix-assisted laser desorption ionization (MALDI) mass spectrometry using matrixes of alpha-cyano-4-hydroxycinnamic acid (CHCA) and 10,15,20-tetrakis(pentafluorophenyl)porphyrin (F20TPP). The CHCA matrix was not suitable for characterization of low molecular mass components of the polyester because the matrix-related ions interfered with the component ions. On the other hand, the F20TPP matrix showed no interference because no matrix-related ions appeared below m/z 822. However, the solvent selection for determining optimal conditions of sample preparation was limited, because F20TPP does not dissolve readily in any of the available organic solvents. In the DIOS spectra, the polymer ions were observed at high sensitivity without a contaminating ion. No matrix is needed for DIOS spectra of low molecular mass polyesters, facilitating sample preparation and selectivity of a precursor ion in post-source decay measurements.  相似文献   

9.
自20世纪80年代发明基质辅助激光解吸电离(Matrix assisted laser desorption ionization,MALDI)质谱以来,该技术已在生物分子分析方面得到了广泛应用.作为一种离子化方法,MALDI具有灵敏度高,对样品要求低,能耐高浓度盐和缓冲剂等优点.测定过程中使用合适的基质不仅能提高测试灵敏度和分辨率,还能扩增测试样品的种类。  相似文献   

10.
A simple reversed-phase nano-column purification and sample preparation technique is described, which markedly improves the mass spectrometric analysis of complex and contaminated peptide mixtures by matrix-assisted laser desorption/ionization (MALDI). The method is simple, fast and utilizes only low-cost disposables. After loading the sample on the column and a subsequent washing step, the analyte molecules are eluted with 50-100 nl of matrix solution directly on to the MALDI/MS target. The washing step ensures removal of a wide range of contaminants. The small bed volume of the column allows efficient sample concentration and the elution process yields very small sample spots. This simplifies the analysis and minimizes discrimination effects due to sample heterogeneity, because the desorption/ionization laser simultaneously irradiates a large portion of the sample. Taken together, these features of the method significantly improve the sensitivity for MALDI/MS analysis of contaminated peptide samples compared with the commonly used sample preparation procedures. This is demonstrated with in-gel tryptic digests of proteins from human brain that were separated by 2D gel electrophoresis. Furthermore, it is shown that with this method 2,5-dihydroxybenzoic acid (DHB) acts as an efficient matrix for peptide mapping. Both detection sensitivity and sequence coverage are comparable to those obtained with the currently preferred matrix alpha-cyano-4-hydroxycinnamic acid (CHCA). The higher stability of peptide ions generated with DHB compared with CHCA is advantageous when analyzing fragile sample molecules. Therefore, the method described here is also of interest for the use of Fourier transform ion cyclotron resonance (FT-ICR) or ion-trap mass analyzers.  相似文献   

11.
A two dimensional electrophoresis database of a human Jurkat T-cell line   总被引:2,自引:0,他引:2  
About 2000 protein spots of human Jurkat T-cells were detected by high resolution two-dimensional gel electrophoresis (2-DE) and were characterized in terms of their isoelectric point and molecular mass. A 2-DE database was constructed and is available at http://www.mpiib-berlin.mpg.de/2D-PAGE/. At present the database contains 67 identified protein spots. These proteins were identified after tryptic digestion by peptide mass fingerprinting with delayed extraction-matrix assisted laser desorption/ionization-mass spectrometry (DE-MALDI-MS). Proteins with a sequence coverage of at least 30% were introduced in the database. This sequence coverage could not always be obtained by using only the matrix alpha-cyano-4-hydroxycinnamic acid (CHCA) for the mass analysis. Therefore, an additional mass spectrum was recorded by using 2,5-dihydroxybenzoic acid (DHB). Usually, additional mass peaks were detected and together with the mass spectrum of CHCA this resulted in the desired sequence coverage.  相似文献   

12.
The methodology for ready-made matrix-assisted laser desorption/ionization (MALDI) target plates covered with an optimized thin layer consisting of matrix and nitrocellulose has been developed. Piezoelectric microdispensing enabled sample depositions in a high-density array format of 2000 sample depositions on a conventionally sized target plate (45 x 47 mm). The sample depositions were made reproducibly in a fully automated mode by using an in-house developed computer-controlled piezoelectric flow-through microdispenser. Additionally, the piezoelectric technique facilitated significant analyte enrichment that increased the detection sensitivity. The MS signal was obtained rapidly, generally within ten laser pulses. An airbrush device was used to generate a fine spray of matrix and nitrocellulose dissolved in acetone. The acetone evaporated instantly when reaching the target plate leaving the entire surface with a thin and uniform matrix/nitrocellulose coating consisting of very small crystals of matrix embedded in the nitrocellulose. These crystals acted as a seed-layer on subsequent analyte depositions, rendering homogeneous sample spots when using alpha-cyano-4-hydroxycinnamic acid (CHCA) as matrix. The relative standard deviation of the signal intensity between spots was (20-30)% (n = 30). The detection sensitivity was improved by restricting the sample spot diameter to 300 microm. The spot size was affected by the deposition rate and the evaporation rate of the dispensed sample volume. Mass spectra of a 25-amol peptide mixture deposition were successfully recorded.  相似文献   

13.
We demonstrate that magnetic mesocellular carbon foams (Mag-MCF-C) can be effectively used for enrichment and desalting of protein digests or peptides in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The large mesocellular pores and surface area of Mag-MCF-C are likely to mainly contribute to high efficiency in enrichment and desalting of protein digests. The magnetic property of Mag-MCF-C enabled easy and simple enrichment and desalting process comprising adsorption, washing, and separation steps by using an external magnet. Following elution from Mag-MCF-C by using a matrix solution (CHCA in 70% ACN/0.1% TFA), the peptides were subjected to MALDI-MS analysis. As a result, MALDI mass spectra of peptides or tryptic protein digests were distinct even at a peptide concentration as low as 50 pM. The use of Mag-MCF-C resulted in significantly improved sequence coverage for protein identification when compared to other conventional methods. Mag-MCF-C will find applications in mass spectrometric analysis of low abundance peptides or protein digests with high sensitivity.  相似文献   

14.
It has been described that ion yield in both positive- and negative-ion matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) of peptides is often inhibited by trace amounts of alkali metals and that the MALDI mass spectra are contaminated by the interfering peaks originating from traces of alkali metals, even when sample preparation is carefully performed. Addition of serine to the commonly used MALDI matrix alpha-cyano-4-hydroxycinnamic acid (CHCA) significantly improved and enhanced the signals of both protonated and deprotonated peptides, [M+H](+) and [M-H](-). The addition of serine to CHCA matrix eliminated the alkali-metal ion adducts, [M+Na](+) and [M+K](+), and the CHCA cluster ions from the mass spectra. Serine and serinephosphate as additives to CHCA enhanced and improved the formation of molecular-related ions of phosphopeptides in negative-ion MALDI mass spectra.  相似文献   

15.
3‐Aminoquinoline/α‐cyano‐4‐hydroxycinnamic acid (3AQ/CHCA) is a liquid matrix (LM), which was reported by Kumar et al. in 1996 for matrix‐assisted laser desorption/ionization (MALDI) mass spectrometry. It is a viscous liquid and has some advantages of durability of ion generation by a self‐healing surface and quantitative performance. In this study, we found a novel aspect of 3AQ/CHCA as a MALDI matrix, which converges hydrophilic material into the center of the droplet of analyte‐3AQ/CHCA mixture on a MALDI sample target well during the process of evaporation of water derived from analyte solvent. This feature made it possible to separate not only the buffer components, but also the peptides and oligosaccharides from one another within 3AQ/CHCA. The MALDI imaging analyses of the analyte‐3AQ/CHCA droplet indicated that the oligosaccharides and the peptides were distributed in the center and in the whole area around the center of 3AQ/CHCA, respectively. This 'on‐target separation' effect was also applicable to glycoprotein digests such as ribonuclease B. These features of 3AQ/CHCA liquid matrix eliminate the requirement for pretreatment, and reduce sample handling losses thus resulting in the improvement of throughput and sensitivity. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
The mass spectra of peptides obtained with different matrices were compared using a matrix-assisted laser desorption/ionization (MALDI) ion source and a multi-turn time-of-flight (TOF) mass spectrometer, MULTUM-IMG, which has been developed at Osaka University. Two types of solid matrices, alpha-cyano-4-hydroxycinnamic acid (CHCA) and 2,5-dihydroxybenzoic acid (DHB), and a liquid matrix made from a mixture of 3-aminoquinoline and CHCA were used. When measuring the peak signal intensity of human angiotensin II [M+H]+ from a fixed sample position, the liquid matrix produced a stable signal over 1000 laser shots, while the signal obtained with CHCA and DHB decayed after about 300 and 100 shots, respectively. Significant differences in the mass resolving power were not observed between the spectra obtained with the three matrices. Signal peak areas were measured as a function of the cycle number in a multi-turn ion trajectory, i.e., the total flight time over a millisecond time scale. For both [M+H]+ of human angiotensin II and bovine insulin, the decay of the signal peak area was the most significant with CHCA, while that measured with DHB was the smallest. The results of the mean initial ion velocity measurements suggested that the extent of metastable decomposition of the analyte ions increased in order of DHB, the liquid matrix, and CHCA, which is consistent with the difference in the decay of the signal peak area as the total flight time increased.  相似文献   

17.
Large signals from alpha-cyano-4-hydroxycinnamic acid (CHCA) matrix complexes with sodium and potassium ions were found to interfere with sensitive matrix-assisted laser desorption/ionization (MALDI) analysis of a hydrochloric acid digest of gelatine preparations. The nature of some selected matrix clusters was investigated by conventional post-source decay and LIFT-TOF/TOF experiments. The matrix clusters fragmented readily by neutral evaporation to give smaller sized matrix cluster species without matrix disintegration. Their characterization distinguished them from peptide signals, in particular from those that had the same nominal mass and differed only in the fractional part of the mass as encountered for gelatine-derived peptides. Knowledge of the molecular composition of these cluster species allowed using them for internal calibration of the MALDI mass spectra. The hydrolytic peptides could be analyzed with increased sensitivity when using 2,5-dihydroxy benzoic acid (DHB) as the MALDI matrix.  相似文献   

18.
This paper presents a highly efficient sample preparation technique for matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The purpose of the research is to use a conventional MALDI support to directly and conveniently detect sub-nM levels of peptides from volume-limited samples with physiological salt levels. In this new method, highly uniform matrix-nitrocellulose spots with a 500 microm diameter were conveniently generated by direct contact of a capillary tip to a stainless steel MALDI plate. An array of 50 microspots can be blotted from 1 microL matrix-nitrocellulose solution within 1 min. It was found that the addition of high concentration nitrocellulose to the alpha-cyano-4-hydroxycinnamic acid (CHCA) matrix solution is critical for the formation of microspots. Samples are deposited on top of those microspots and incubated for 3 min. The CHCA-nitrocellulose surface shows a significant peptide binding capability for sub-nM levels of peptide. Restricting the matrix spot diameter to 500 microm gives an analyte enrichment effect because the peptides are confined to a small solid-phase surface area. Selective peptide binding is seen even with >0.15 M salt levels. Loading small aliquots of samples with multiple applications allows low level peptide detection down to 100 pM. Push-pull perfusates collected from the rat striatum were successfully analyzed with the microspot method.  相似文献   

19.
Matrix-assisted laser desorption/ionisation (MALDI) quadrupole time-of-flight mass spectrometry (Q-TOFMS) has been used to detect and image the distribution of a xenobiotic substance in skin. Porcine epidermal tissue was treated with 'Nizoral', a medicated shampoo containing ketoconazole (+/-)-1-acetyl-4-[p-[[(2R,4S)-2-(2,4-dichlorophenyl)-2-(imidazol-1-ylmethyl)-1,3-dioxolan-4-yl]methoxy]phenyl]piperazine) as active ingredient. Following incubation for 1 h at 37 degrees C all excess formulation was washed from the surface. A cross-section of the drug-treated tissue was then blotted onto a cellulose membrane, precoated in matrix (alpha-cyano-4-hydroxycinnamic acid (CHCA)), by airspray deposition. In separate experiments the tissue surface was treated with Nizoral within a triangular former, and subsequently blotted onto a matrix-coated membrane. Sample membranes were then mounted into the recess of specialised MALDI targets with adhesive tape. All samples were analysed by MALDI-TOFMS using an Applied Biosystem 'Q-star Pulsar i' hybrid Q-TOF mass spectrometer fitted with an orthagonal MALDI ion source and imaging software. Detection of the protonated molecule was readily achievable by this technique. Treatment of the tissue within a template gave rise to images depicting the expected distribution of the drug, demonstrating that this technique is capable of producing spatially useful data. Ion images demonstrating the permeation of the applied compound into the skin were achieved by imaging a cross-sectional imprint of treated tissue. A calibration graph for the determination of ketoconazole was prepared using the sodium adduct of the matrix ion as an internal standard. This enabled construction of a quantitative profile of drug in skin. Conventional haematoxylin and eosin staining and microscopy methods were employed to obtain a histological image of the porcine epidermal tissue. Superimposing the mass spectrometric and histological images appeared to indicate drug permeation into the dermal tissue layer.  相似文献   

20.
考察了介孔沸石材料负载传统有机基质α-氰基-4-羟基桂皮酸(CHCA)用于基质辅助激光解吸电离-飞行时间质谱(MALDI-TOF-MS)分析多肽Substance P和氟喹诺酮类药物等小分子的效果.在相同的MALDI-TOF-MS质谱条件下,与传统CHCA进行了比较,同时分别考察了不同硅铝比(SiO2/Al2 O3)的ZSM-5以及不同介孔大小的Beta与ZSM-5沸石载体对Substance P的检测效果.结果表明,沸石负载CHCA新型复合基质具有抑制碱金属离子峰、消除干扰碎片离子、简化与改善质谱图、提高离子化效率等优点.实验结果表明,沸石表面酸性越强,有力介孔能够充分包裹CHCA分子,则复合基质抑制干扰碎片和提高离子化效率的能力越高.复合基质成功应用于复杂样品中恩诺沙星与诺氟沙星药物小分子的MALDI-TOF-MS检测.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号