首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Formation of Organosilicon Compounds. 70. Reactions of Si-fluorinated 1,3,5-Trisilapentanes with CH3MgCl and LiCH3 F3Si? CCl2? SiF2? CH2? SiF3 3 reacts with meMgCl. (me = Ch3 starting with a Si-methylation and not with a C-metallation as in the corresponding Si- and C-chlorinated compounds, e. g. (Cl3Si? CCl2)2SiCl2 [2]. A CCl-hydrogenation is observed too, which in the case of F3Si? CCl2? SiF2? CHCl? SiF3 4 gives meS3Si? CCl2? Sime2? CH2? Sime3. (F3Si? CCl2)2 5 reacts with meMgCl to form preferentially 1,2-Disilapropanes by cleaving a Si? Cbond. The isolation of F3Si? CCl2H and meF2Si? CCl2? SiF2me allows to locate the bond where 5 is cleaved at the beginning of the reaction. With meLi 5 reacts to form mainly me3Si? C?C? Sime3, showing that in the reaction of meLi, being a stronger reagent than meMgCl, and 5 a C-metallation occurs, following the same mechanism as in the reaction with (Cl3Si? CCl2)2)SiCl2 [2]. The reaction conditions for the synthesis of Si-fluroinated and C-chlorinated 1,3,5-Trisilapentanes in a 0.1 mol scale are reported. N.m.r. data of all investigated compounds are tabulated.  相似文献   

2.
Formation of Organosilicon Compounds. 73. Reactions of C-chlorinated 1,3-Disilapropanes with CH3MgCl (Cl3Si)2CCl2 reacts with an excess of meMgCl (me = CH3) in Et2O (diethylether) forming (me3Si)22C?CH2 mainly besides Si-methylated 1,3-disilapropanes with CmeCl, CHCl, CH2 groups [6]. For investigating the mechanism of formation of the methylidengroup reactions were carried out with differently Si-methylated and Si-chlorinated 2-methyl-1-2-chloro-1,3-disilapropanes and 2,2-dichloro-1,3-disilapropanes. Whereas (me3Si)2CmeCl reacts neither with meMgCl nor with Lime. it forms (me3Si)2C?CH2 and (me3Si)2CmeH with Li or Mg resp. The reaction starts with the metallation to (me3Si)2CmeLi and (me3Si)2Cme(MgCl) resp., followed by elimination of LiH and HMgCl resp. with formation of (me3Si)2C?CH2. LiH and HMgCl resp. reduces (me3Si)2CmeCl to (me3Si)2CmeH. This mechanism is supported by the reactions of (me3Si)2CCl(CD3). The Si-chlorination increases the reactivity of the CmeCl group and the created C?CH2 group favours Si-methylation. The CCl2 group is more reactive than the CmeCl group; (me3Si)2CCl2 already forms the methyliden group with meMgCl in Et2O via the not isolated intermediate (me3Si)2CCl(MgCl). which prefers the methylation to (me3Si)2Cme(MgCl). The n.m.r. data of the investigated compounds are given.  相似文献   

3.
Formation of Organosilicon Compounds. LI. Reactions of Various Chlorinated 1.3.5-Trisilacyclohexanes with CH3MgCl and their 29SiNMR Spectra The reaction of (a) with meMgCl starts with the formation of a Grignard compound of (a) and forms (c) via (b). The reaction sequence will be described. The ring contraction of the six-membered ringsystem is also observed with compound (d) leading to (e), whereas (f) reacts to (g), the ringsystem being maintained. No ring-contraction is observed when investigating the reactions of the derivatives containing Si? H- and C? Cl-groups. Compound (i) gives rise to (j), (k) to (l) whereas cleavage occurs with (m) and (n) does not react under the conditions applied. According to the PMR and 29SiNMR spectra, the polarity of the Si? Cl-bond decreases in the compounds containing Si? Cl and CCl-groups by increasing the number of CCl2 groups. In the compounds containing Si? H and C? Cl-groups the polarity of the Si? H-bond increases with the degree of chlorination at the C-atom. By that, the different chemical behaviour can be understood. The preparations of the starting compounds are described.  相似文献   

4.
Formation of Organosilicon Compounds. 109. Reactions of Perhydrogenated Carbosilanes with Alkyl-Lithium Compounds Si-hydrogenated linear carbosilanes react with MeLi or nBuLi to give the Si-alkylated derivatives. In contrast to the Si-methylated derivatives of (H3Si? CH2)2SiH2 1 and (H3Si)2CH2 2 and to (Me2Si? CH2)3 no lithiation of CH2 groups is observed. Such, 1 with nBuLi yields nBuH2Si? CH2? SiH2? CH2? SiH3 5 and (nBuH2Si? CH2)2SiH2 6 . 2 reacts with nBuLi to give nBuH2Si? CH2SiH3 7 and (nBuH2Si)2CH2 8 besides of 1, 5 und 6 . The latter results from a cleavage of a Si? C bond in 2 Producing nBuSiH3 and LiCH2? SiH3 which combines with 2 to 1 . Subsequently 1 forms 5 and 6 . No higher alkylated derivatives of 1 or 2 could be detected.  相似文献   

5.
Formation of Organosilicon Compounds. 86. Si-phenyl and Si-butyl Substituted 1,3,5-Trisilacyclohexanes By treating (BrHSi? CH2)3 with phMgBr or t-buLi, resp., and subsequent separation of the isomers, the pure cis-cis substituted 1,3,5-trisilacyclohexanes I are accessible which yield II (Formula see Inhaltsübersicht) by reaction with Br2. (F2Si? CH2)3 8 can be transferred into (ph2Si? CH2)3 7 with phLi. With HCl/AlCl3 7 forms (Cl2Si? CH2)3, whereas even with an excess of Br2 it only yields (phBrSi? CH2)3. Cleavage of 7 with one equivalent of Br2 yields (H2C? Si)3ph5Br 14, which with LiAlH4 forms (H2C? Si)3ph5H 10. 10 is not so easy to obtain via (H2C? Si)3ph5F 9 from the reaction of 8 with 5 equivalents of phLi. All of the SiH and SiBr groups in I and II, resp., occupy axial positions as well as the Br atom in 14 the H atom at Si in 10 and the F atom in 9.  相似文献   

6.
The compounds (a) and (b) have been synthesized, and their reactions with Br2, HBr, HSiCl3 and HSime2Br (me = CH3) are described. The synthesis of (a) and (b) can be achieved by cycloaddition of Hme2Si? CH2? Sime2? CH2? Sime2? C?CH (c). (a) is also formed by cyclisation of (d) and (e) with Li. (d) and (e) can be prepared by ?SiH addition to HC?C? Si? compounds (cat. H2PtCl6 · 6 H2O). With Br2 (a) yields (f). whereas (b) yields the trans compound (g). The subsequent reactions of (f) and (g) with Br2 and their decomposition via β-elimination to (i) (j) are reported. Both (a) and (b) react with HBr to (h), changing the size of the ring in the case of (b). (h) decomposes via β-elimination. HSiCl3 and HSime2Br addition to (a) yields 1,1,2-trisila-ethane derivates. All intermediate compounds of these syntheses and their NMR data are given.  相似文献   

7.
Formation of Organosilicon Compounds. 83. Formation, Reactions, and Structure of Ylides Generated from Perchlorinated Carbosilanes The CCl-moiety in perchlorinated carbosilanes as (Cl3Si)2 a, Cl3Si? CH2? SiCl2? CCl2? SiCl3 b, (Cl3Si? CCl2)2SiCl2 c or (Cl2Si? CCl2)3 d, e.g., cleaves the Si? P bond of me3Si? Pme2 e (me = CH3); and by subsequent rearrangement ylides are formed. Such, treating e with a yields (Cl3Si)2CPme2Cl 1, which also results from the reaction of me2P? Pme2 with a. The ylides also can be obtained by means of treating the carbosilanes a, b, c or d with LiPme2. Thus, c with one mole of LiPme2 yields Cl3Si? CCl2? SiCl2? C(Pme2Cl)? SiCl3 or Cl3Si? C(Pme2Cl)? SiCl2? C(Pme2Cl)? SiCl3, resp., with two moles of LiPme2. The corresponding Si-methylated derivates do not form ylides; (me3Si)2CCl2, e.g., with e in benzene yields me3Si? CH(Pme2)? Sime3. One mole of Lime methylates 1 to yield (Cl3Si)2CPme3 11. With either LiPme2, me3Si? Pme2 or Me2P? Pme2 1 forms (Cl3Si)2CPme2-Pme2. Reacting 1 with CH3OH/(C2H5)2NH, (Cl3Si)[SiCl2(OCH3)]CPme2(OCH3) is formed. Ylides also result from the reactions of partially C-chlorinated 1,1,3,3,5,5-hexachloro-1,3,5-trisilacyclohexanes with me3Si? Pme2, (Cl2Si? CCl2)3 with three moles of me3Si? Pme2 or LiPme2, resp., yields (Cl2Si? CPme2Cl)3 16, the 1,1,3,3,5,5-Hexachlor-2,4,6-tris(chlordimethylphosphoranyliden)-1,3,5-trisilacyclohexan, which crystallizes with one mole of monoglyme. X-ray structure determinations revealed that 1, 11 and 16 are planar. As well the (P? C) as the (Si? C) bond lengths are remarkably shortened; in 1 (P? C) to 173.3 pm, (Si? C) to 173.3 pm, (Si? C) to 179.5 pm, in 16 (P? C) to 168.7 pm, (Si? C) to 180 pm. The (Si? C) and (P? C) bond orders amount to about 1.33, and are relatively equally distributed. Therefore, the charge of the formal carbanion is equally distributed, which shall be expressed by means of the following kind of writing for 1 and 16 see “Inhaltsübersicht”.  相似文献   

8.
Formation of Organosilicon Compounds. 108 [1]. Thermally Induced Reactions of Amino-Substituted Disilanes Thermally induced reactions of amino-substituted disilanes yield Si rich silanes. At 300°C, Me3Si? SiMe2? NMeH 1 yields Me3Si? NMeH 2 and Me3Si? (SiMe2)2-NMeH 3 in a ratio 1 : 2 : 3 = 1,6 : 1 : 1, whereas Me3Si? SiMe2? N(iPr)H 4 at 350°C yields Me3Si? N(iPr)H 5 , Me3Si? (SiMe2)2-N(iPr)H 6 and Me3Si? (SiMe2)3? N(iPr)H 7 in a ratio of 4 : 6 : 7 = 0.8 : 1.0 : 0.6. Me3Si? SiMe2? NMe2 8 at 300°C (72 h) yields Me3Si? NMe2 9 and Me3Si-(SiMe2)2-NMe2 10 in a ratio of 9 : 8 : 10 = 1 : 0.22 : 0.44 The thermal stability of these disilanes is determined by the sterical requirements of the amino substituents NMeH < NMe2 < N(iPr)H. The introduction of a second NMe2 group decreases the stability and favours the formation of Si rich silanes. Such, Me2N? (SiMe2)2? NMe2 11 already at 250°C (2 h) yields Me2N? SiMe2? NMe2 12 , Me2N? (SiMe2)2? NMe2 13 and Me2N? (SiMe2)4? NMe2 14 in a ratio of 11 : 13 : 14 = 0.3 : 0.9 : 1.0. The reactions can be understood as insertions of thermally produced dimethylsilylene into the Si? N bond of the disilanes. This process is strongly favoured as compared to the trapping reactions with Ph? C?C? Ph or Et3SiH. The mentioned reactions correspond closely to those of the methoxy-disilanes[2]. However (MeN? SiMe2? SiMe2)2 15 , obtained from HMeN? (SiMe2)2? NMeH by condensation [3], at 400°C suffers a ring contraction to octymethyl-1,3-diaza-2,4,5-trisilacyclopentane (69 weight %), and yields also some solid residue, the composition of which corresponds to Si3C7NH21.  相似文献   

9.
Formation of Organosilicon Compounds. 80. Si-Metalation of 1,3,5-Trisilacyclohexanes by Means of Trisition Metal Complexes Several Si-transition metal-substituted 1,3,5-trisilacyclohexanes are reported. l-Bromo-1,3,5-trisilacyclohexane reacts with the metal carbonyl anions W(CO)5cp?, Mo(CO)3cp-, Cr(CO)3cp?, Mn(CO)3?, Fe(CO)2cp?, or Co(CO)4minus;, resp., yielding monosubstituted derivatives as 6, e. g.(cp = π-cyclopentadienyl). 1,3-Dibromo-1,3,5-trisilacyclohexane forms disubstituted compounds aa 7, e. g., with 2 moles of the metal carbonyl anions Fe(CO)2cp?, Mn(CO)5? or Co(CO)4?. Starting from (H2c? SiHBr)3 compound 13 is accessible by reaction with KCo(CO)4. In the soluted compounds the metal carbonyl groups occupy the equatorial positions in the chair form of the six membered ring. The reaction of 13 with Co2(CO)8 yields 17 , whereas 6 preferrably forms 18 . Starting from (H2C? SiH2)3 the reaction with Co2(CO)2 preferrably yields 19. The reported compounds are crystalline, air – and moisture – sensitive. The reported formulae are assured by analysis, IR, and NMR investigations.  相似文献   

10.
Formation of Organosilicon Compounds. 67. Studies of Metallorganic Synthesis of Si-methylated and C-chlorinated Carbosilanes Using Chlorocarbenoids Synthesis and reactions of C6H5me2Si? CCl2H (A), (H5C6me2Si)2CCl2 (B), and me2Si(CCl2H)2 (C) were investigated in order to find conditions for the synthesis of C-functional carbosilanes via chlorocarbenoids. (A) and (B) react with n-butyl-Li(buLi) (?100°C/THF/ether/pentane) yielding H5C6me2Si? CCl2Li and (H5C6me2Si)CClLi, respectively. These lithium reagents form (B) and(H5C6me2Si)3CCl with H5C6me2SiCl. In the reaction of (H5C6me2Si)3CCl with lithium (H5C6me2Si)3CLi (D) is obtained. (D) forms with H2O/HCl the compound (H5C6me2Si)3CH which is cleaved by HBr yielding (Brme2Si)3CH. (C) gives LiCCl2? Sime2(CCl2H) with buLi (molar ratio 1:1) in a low temperature reaction. Clme2Si? CCl2? Sime2(CCl2H) is formed in the reaction of LiCCl2? Sime2? CCl2H with Sime2CCl2 (yield >90%). Reacting (C) and buLi (1:3) and treating this solution with Sime2CI2 gives (ClSime2)2C?CH Sime2Cl (>85%) via a monosilacyclopropane intermediate. In the inverse reaction, if (C) is added to buLi, (HCCl2)me2SiC?Sime2(CCl2H) is one of the isolated reaction products. If buLi is added to (C) (2:l) and this solution is treated with Sime3Cl, compounds me3Si? CCL2? Sime2? CCL2H, me3Si? CClH? Sime2(CCl2H), (me3Si? CC12)2Sime2, me3Si? CHCI? Sime2? CC12? Sime3 are isolated. The same products were obtained in the reaction of me3Si? CCl2? Sime2? CCl2H with buLi and me3SiCl.  相似文献   

11.
Formation of Organosilicon Compounds. 98. Reaction of Silylated Phosphorus Ylides with PCl3 The reaction of Si-substituted phosphorus ylides as Me2Si(CH2? SiMe2)2C?PMe3Br 1 , Cl2Si(CH2? SiCl2)2C?PMe2Cl 2 , and (Cl3Si)2C?PMe2Cl 3 with PCl3 yields (Cl2P)2C?PMe2Cl 5 by chlorinating cleavage of the Si-ylid-C bond. Besides 5 also (ClMe2SiCH2)2SiMe2, (Cl3SiCH2)2SiCl2, resp. SiCl4 result from the reaction of 1, 2 and 3 with PCl3. (Cl2P)2C?PMe2Cl forms colourless crystals, mp. 84°C.  相似文献   

12.
Formation of Organosilicon Compounds. 79. NMR-Spectroscopical Investigation of 1,3,5-Trisilacyclohexanes and 1,3,5,7-Tetrasilaadamantanes For several groups of isomeric 1,3,5-trisilacyclohexanes and 1,3,5,7-tetrasilaadamantanes, structure assignment and conformation analysis of given by elucidation of their 1H-NMR spectra.  相似文献   

13.
The synthesis of the HSi?resp. BrSi? containing 1,3,5,7-tetrasila-cyclooctanes (a) and (b) is described. (a) can be prepared from meH2Si? CH2? Sime2? CH2? SiHme? CH2? Sime2? CH2Br resp. from meBrHSi? CH2? Sime2? CH2? SiHme? CH2? Sime2? CH2Br with Li and converted to (b) with Br2. The siloxane (c) (m.p. 37–39°C) is formed by hydrolysis of (b) and also during the reaction of (b) with CH2Br2 and Li in (C2H5)2O because of a cleavage of the ether.  相似文献   

14.
Formation of Organosilicon Compounds. 96. Preparation and Structure of P-Ylides of the 1,3,5-Trisilahexanes (Influence of the Substituents) The influence of the substituents at the silicon atoms on formation and structure of ylides of 1,3,5-trisilacyclohexanesis investigated. The reactions of 1 , 2 , 3 with Me3Si? PMe2 lead via cleavage of the Si? P bond and subsequent rearrangement to the ylides 4 , 5 and 6 . The x-ray structure determination reveals, that the atoms of the ylid part of 4 are in a plane with the shortened bond distances d(C? P) = 168.6 pm and d(Si? C) = 180.1 pm, whereas the other endocyclic Si? C distances remain nearly unaffected by the ylid formation. Only the endocyclic bond angles C? Si? C of the Si atoms of the ylid are enlarged (116°). In the molecule 6 d(C? P) = 164.6 pm is much shorter, but d(P? Br) = 236.6 pm is enlarged. This enlargement is coupled with a deviation of 17 pm for the ylidic C atom from the ylid plane. Distances and angles are normal in the methylated trisilnhexane. The ring in 6 has boat conformation, in 4 a flat chair conformation.  相似文献   

15.
16.
Formation of Organosilicon Compounds. 92. Formation and Structure of Octamethylhexasila-hexascaphane By rearrangement and abstraction of CH4 at the presence of AlBr3 2 forms 3 , and 6 forms 7 , which is also obtained reacting 8 and 9 under the same condition. Lithination of 1, 1, 3, 5, 5, 7, 7, 9, 9-Nonamethyl-1, 3, 5, 7, 9-pentasiladecaline yields 12 , which is trapped with me3SiCl to form 6 . Convertation of 13 to 14 leads to 8 by reaction with ClSi(CH2—Sime3)3. Compound 7 is characterized by NMR and mass spectroscopy as well as X-ray structural analysis. 1, 3, 5, 7, 9, 9, 11, 11-Octamethyl-1, 3, 5, 7, 9, 11-hexasila-hexascaphane 7 crystallizes in the monoclinic space group P21/n (No. 14) with a = 3296.7 pm, b = 1536.2 pm, c = 891.9 pm, β 91.71° and Z = 8 formular units. Both crystallographic independent molecules have approximately the symmetry C2. The differences of corresponding bond lengths, bond angles and torsion angles are unimportant. But there is a distinct dependence of the Si? C bond length relative to the function of the bond in the molecule (Averages: Si? C) (endo) = 188.4 pm, Si? C (exo) = 187.6 (pm).  相似文献   

17.
Formation of Organosilicon Compounds. LVIII. Synthesis of a Carbosilane with Propellane Structure 1 (· ? C resp. CH2; x ? Si(CH3)2 resp. Si) is formed by a coupling reaction of BrSi(CH2? Sime2? CH2? Sime2Br)3 2 with CCl4 and Li. The reaction of C6H5me2Si? CH2Li with Clme2Si? CH2Br leads to C6H5me2Si? CH2? Sime2? CH2Br. Metallation with lithium and succeeding reaction with Cl3SiC6H5 produces compound C6H5Si(CH2? Sime2? CH2? Sime2C6H5)3, which than forms 2 by cleavage with bromine.  相似文献   

18.
Further separation of the pyrolysis products of (CH3)3SiCl can be achieved by reaction with LiAlH4/LiH (transfer of SiCl to SiH groups). By means of adsorptions chromatography a separation is obtained into 4 groups of components. By application of gel chromatography (sephadex LH 20) separation is improved, thus fractions of carbosilanes are found with average molecular weights between 5000 and 200. A given mixture of the compounds [5], [9], [10] has been separated by means of gel chromatography so that pure compounds were obtained. The mixture of the 1,3,5,7-Tetrasila-adamantanes, which are formed in the pyrolysis of (CH3)3SiCl, is separated by gel chromatography (efficiency control of separation is performed by NMR and mass spectrography of the different fractions), a concentration of some compounds is obtained, some of them are isolated purely by further operations. The ratio of the compounds [1], [2], [3], [4], found in the pyrolysis products, is 170:26:3:1. Derivatives are formed with SiH, SiCl, and SiCH3 groups by complete or respectively partial hydrogenation. Comparing the values of the chemical shift of the CH3-protones [measured in τ) a linear decrease is found in the compounds [9], [4], [3], [2].  相似文献   

19.
By LiAlH4 (Cl3Si)2CH2, (Cl2Si? CH2)2SiCl2 are reduced to (H3Si)2CH2 (a), (H3Si? CH2)2SiH2 (b) and (H2Si? CH2)3(c). However with the compounds (Cl3Si)2CCl2, (Cl3Si? CCl202SiCl2 and (Cl2Si? CCl2)3 cleavages of the Si? C-bond and reduction of the CCl-groups occur apart from the normal reduction of the Si-Cl-groups to (H3Si)2CCl2 (d), (H3SiCCl2)2SiH2 (e) and (H2Si? CCl2)3. Excess LiAlH4 favours this cleavage, the exact amount of a quarter of a mole LiAlH4 per SiCl-group allows the formation of (d), (e), (f). The cleavage of (e) is in accordance with: (1), (2),(3). Therefore SiH34 and (H3Si)2CCl2 are the main-reaction-products and CH3SiH3 is formed acc. to equ. (3). Because of the cleavage of (H2Si? CCl2)3 with LiAlH4 H3Si? CCl2? SiH2? CH3and H3Si? CH2? SiH2? CH2? SiH2? CH3 are preferentially formed after the hydrolysis. The CH2-containing compounds (a), (b), (c) cannot be cleaved in an analogous reaction.  相似文献   

20.
Formation of Organosilicon Compounds. LXII. Partial Brominated Carbosilanes The photobromination of 1 leads to compound 2 as well as to C-chlorinated derivatives if the time of reaction is prolonged. Compound 2 is also formed from (Br2Si–CH2)3; Gl. (1) see ?Inhaltsübersicht”?. In a corresponding reaction (Cl3Si–CH2)2SiCl2 gives successively Cl3Si–CHBr–SiCl2–CH2–SiCl3, Cl3Si–CBr2–SiCl2–CH2–SiCl3 and Cl3Si–CCl2–SiCl2–CH2–SiCl3. (Cl3Si)2CBr2 is accessible through the photobromination of (Cl3Si)2CH2. The reactivity of the CBr2-group is quite obvious in the reaction of Cl2Si–CBr2–SiCl2–CH2–SiCl3 with LiAlH4 yielding (H3Si–CH2)2SiCl2 as well as in the reaction of compound 2 with CH3MgCl yielding [(CH3)2Si–CH2]3. By treatment of the SiH groups with bromine the preparation of compounds with the general formulas CH3SiHnBr3?n; (H3?nSiBrn)2CH2; (H3?nSiBrn? CH2)2SiH2?nBrn; (H2?nBrnSi? CH2)3 and (H3?nSiBrn)2CCl2 is possible. Analysis of the nmr spectra shows that 1,3-Dibromo-1,3,5-trisilacyclohexane is formed to 67% in the trans and to 33% in the cis configuration; 1,3,5-Tribromo-1,3,5-trisilacyclohexane is formed to 80–90% in teh cis-trans configuration. The results of 1H and 29Si NMR investigations are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号