首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The kinetics of the slow oxidation of CO in the presence of H2 have been studied above the second explosion limit for the mixture 2CO + O2 + X% H2 at the temperature range of 530–570°C, pressures from 300 to 530 torr, and hydrogen contents of 1.1, 2.8, and 5.7%. The second explosion limit has been experimentally determined for the mixture of 2CO + O2 containing 1.0, 3.0, and 5.7% H2. On the basis of the oxidation scheme of CO in the presence of H2, which includes the accepted mechanism of oxidation of hydrogen supplemented by the reactions in which CO takes part, the second explosion limit and the profiles of the slow reaction are calculated by computer methods. The agreement found between experimental and calculated values allows one to conclude that the scheme under consideration rather completely described the slow reaction above the second limit and the occurrence of the second explosion limit in the mixture CO–O2–H2. The rate constant for the reaction HO2 + CO → OH + CO2 was calculated from the experimental data and was found to agree with previous determinations.  相似文献   

3.
The vanadate anion in the presence of pyrazine-2-carboxylic acid (PCA) was found to effectively catalyze the oxidation of isopropanol to acetone with hydrogen peroxide. The electronic spectra of solutions and the kinetics of oxidation were studied. The conclusion was drawn that the rate-determining stage of the reaction was the decomposition of the vanadium(V) diperoxo complex with PCA, and the particle that induced the oxidation of isopropanol was the hydroxyl radical. Supposedly, the HO· radical detached a hydrogen atom from isopropanol, and the Me2 C· (OH) radical formed reacted with HOO· to produce acetone and hydrogen peroxide. The electronic spectra of solutions in isopropanol and acetonitrile and the dependences of the initial rates of isopropanol oxidation without a solvent and cyclohexane oxidation in acetonitrile on the initial concentration of hydrogen peroxide were compared. The conclusion was drawn that hydroxyl radicals appeared in the oxidation of alkanes in acetonitrile in the decomposition of the vanadium diperoxo complex rather than the monoperoxo derivative, as was suggested by us earlier.  相似文献   

4.
5.
The thermochemical approach to analysis of thermal decomposition of solids, developed earlier by L??vov, is extended here, for the first time, to interpret the kinetics and mechanism of the reduction of an oxide (NiO) by a gas (H2). This approach is based on the mechanism of congruent dissociative vaporization of the reactant, Langmuir kinetics and determination of the Arrhenius E parameter by the third-law method. The calculated enthalpy of the reaction is in good agreement with the experimentally measured E value. Many other mechanistic and kinetic features of the reaction are explained within the framework of the given theoretical approach. These include: the formation of metal nuclei; the initial autocatalytic behavior; the formation of nanocrystalline structure of the reduced metal product; the equimolar and isobaric modes of reduction; the dependence of reduction rate on hydrogen pressure; the more than twofold decrease of the E parameter with the extent of reaction ??, and the systematic increase of E with temperature.  相似文献   

6.
The kinetic study of the stationary oxidation of hydrogen on silver was carried out. The dependences of the reaction rate on the ratios of hydrogen and oxygen in the reaction mixture under a constant total pressure of 1000 Pa were obtained at 423, 448, and 473 K. The reaction seems to proceed via the intermediate formation of surface hydroxyls. A kinetic equation of the reaction that satisfactorily described the experimental data was derived.  相似文献   

7.
The kinetics of the oxidation of substituted phenyl methyl sulfides by hydrogen peroxide in borate/boric acid buffers were investigated as a function of pH, total peroxide concentration, and total boron concentration. Second-order rate constants at 25 degrees C for the reaction of methyl 4-nitrophenyl sulfide and H(2)O(2), monoperoxoborate, HOOB(OH)(3) (-), or diperoxoborate, (HOO)(2)B(OH)(2) (-), are 8.29 x 10(-5), 1.51 x 10(-2) and 1.06 x 10(-2) M(-1) s(-1), respectively. Peroxoboric acid, HOOB(OH)(2), is unreactive. The Hammett rho values for the reactions of a range of substituted phenyl methyl sulfides and hydrogen peroxide, monoperoxoborate or diperoxoborate are -1.50 +/- 0.1, -0.65 +/- 0.07 and -0.48 (two points only), respectively. The rho values for the peroxoborates are of significantly lower magnitude than expected from their reactivity compared to other peroxides. Nevertheless the negative rho values indicate positive charge development on the sulfur atom in the transition state consistent with nucleophilic attack by the organic sulfides on the peroxoborates as with the other peroxides. The kinetic parameters, including the lack of reactivity of peroxoboric acid, are discussed in terms of the differences in the transition state of reactions involving peroxoboron species with respect to those of other peroxides.  相似文献   

8.
9.
The kinetics of the complex reaction between I and H2O2 in acid media was investigated. The particular attention was focused on the determination of the rate constant of the reaction between HIO and H2O2 involved in the investigated complex process. The examination of the whole kinetics was performed by simultaneously monitoring the evolution of O2 pressure, I3 and I concentrations. We modeled the behavior of experimentally followed components based on Liebhafsky’s research. Our preliminary results suggest a significantly higher rate constant (3.5 × 107 M−1 s−1) of the reaction between HIO and H2O2 as those proposed in the literature.  相似文献   

10.
The kinetics of the reaction of seleno-DL-methionine with potassium ferrate were investigated under pseudo first-order conditions. The oxidation to the selenoxide is complete within the timeframe of 7.5ms to 2s. The kinetics are first-order in each of the hydrogen ion, selenomethionine and ferrate ion concentrations over the pH range 8.53 to 10.13, but zeroth-order in hydrogen ion concentration at lower pH values. The results are very similar for methionine, except that the overall rate constant is over two orders of magnitude lower. The proposed mechanism involves a rate- determining step between selenomethionine and the protonated ferrate ion.  相似文献   

11.
The kinetics and mechanism of the ferrate(VI) oxidation of hydroxylamines   总被引:1,自引:0,他引:1  
Aqueous solutions of potassium ferrate(VI) cleanly and rapidly oxidize hydroxylamine to nitrous oxide, N-methylhydroxylamine to nitrosomethane, N-phenylhydroxylamine to nitrosobenzene, and O-methylhydroxylamine to methanol and nitrogen. The kinetics show first-order behavior with respect to each reactant and a two term component representing acid dependent and independent pathways. A general mechanism involving intermediate formation coupled with a two-electron oxidation is proposed.  相似文献   

12.
The kinetics of N-monooxidation of 4-vinylpyridine as a π-deficient heteroaromatic compound under the conditions of gas-phase free-radical chain oxidation was studied. The experimental interference kinetic curves of synchronous hydrogen peroxide decomposition and 4-vinylpyridine N-oxidation reactions were obtained. The region of selective N-oxidation was determined and optimum conditions of N-oxide preparation found. The most probable mechanism was suggested. According to this mechanism, a key role in the free-radical N-oxidation of the substrate and its synchronization with the H2O2 decomposition reaction was played by HO2 radicals.  相似文献   

13.
14.
The kinetics of the reaction between ethionine and thiourea were investigated under pseudo and non-pseudo-first-order conditions. Ethionine was oxidized to the sulfoxide within 500 s and thiourea was oxidized to urea within 10 s. Above a pH of ca. 8.5 the reaction was first-order in the concentration of the organosulfur compound, the hydrogen ions and the ferrate ions, whereas, below this pH, the kinetics were independent of the hydrogen ion concentration. A possible mechanism for both compounds is initial protonation of the ferrate ion followed by the two electron rate-determining step of addition of oxygen to the organosulfur compound. The kinetic parameters for ethionine compare favorably with those for similar compounds, whereas thiourea tends to be more active. The rate constant for the rate-determining step is 4.1 × 102 M–1 s–1 for ethionine and 4.1 × 103 M–1 s–1 for thiourea.  相似文献   

15.
16.
Oscillatory change of pH occurs during the chromate-catalyzed decomposition of hydrogen peroxide in a weakly acidic medium at elevated temperature and at high initial concentration of hydrogen peroxide. In a closed system, there are only two or three periods, but sustained oscillation occurs in a CSTR. In a CSTR bistability is also found. In closed systems the temperature exhibits a great maximum (up to 15°C increase), in a CSTR sustained oscillation occurs at a constant stationary temperature.  相似文献   

17.
Kinetics of oxidation of triphenylphosphine (TPP) by hydrogen peroside has been investigated in 95 vol. % aqueous ethanol. The reaction is first-order each in TPP and hydrogen peroxide. A mechanism involving a bimolecular nucleophilic displacement of TPP on the peroxide molecule in the rate-determining step is proposed.
() 95 .% . , H2O2. , , , H2O2 .
  相似文献   

18.
The possibility of using the thermochemical approach to thermal decomposition of solids, previously developed by the author, to interpretation of the mechanism and kinetics of reduction of metal oxides with hydrogen was studied. Many properties of NiO reduction with hydrogen, including formation of metal nuclea, the nature of induction period, autocatalysis effect, equimolar and isobaric periods of reduction, the character of the effect of hydrogen pressure on reduction rate, and the nanocrystalline structure of a reduced metal, were explained in terms of the given approach.  相似文献   

19.
20.
The reaction between formic acid and bromine in strongly acid aqueous media at 298 K was studied by absorption spectrophotometry (λ = 447 nm). Reaction rates, expressed as R = -d[Br2]/dt, depend on the concentrations of HCOOH (0.3–2.4M), Br2[(2.7–13.6) × 10?3M], H+ (0.03–2.0M), and Br? (up to 0.6M). The mechanism with k1 = 20.2 ± 1.2 M?1 sec?1, pK2 = 3.76, pK3 = ?1.20, accounts for all experimental observations. Br3? and HCOOH can be considered unreactive within experimental error. Apparent deviations from the basic mechanism at higher acidities can be quantitatively ascribed to the nonideality of ionic species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号