首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During the studies on the intramolecular cyclization of 4-arylamino-2(5H)-furanones via the Pd-catalyzed C-H activation, a kind of difunctionalization reaction caused by the designed oxidant PhI(OAc)2 [(diacetoxyiodo)benzene, DIB] was accidentally discovered. When 1.5 eq. DIB is used as a difunctionalizable transfer reagent in the 40 h reaction at 60°C and CH3CN as solvent, 4-diarylamino-3-iodo-2(5H)-furanones can be obtained with the yields of 57–91% (usually more than 73%). The simultaneous α-iodination and N β -arylation reaction without metal catalyst is efficient and convenient. This novel utilization with a greater atom economy provides a simple and practical conversion route for the synthesis of the potential biological 2(5H)-furanone compounds containing multifunctional groups.  相似文献   

2.
A gold-catalyzed cycloisomerization of 2-indolyl-3-[(trimethylsilyl)ethynyl)]quinoxalines with concomitant 1,2-silyl shift forms 6-(trimethylsilyl)indolo[3,2-a]phenazines in moderate to excellent yield. These silylated heterocycles are readily transformed into 6-aryl-indolo[3,2-a]phenazines in moderate to good yield by one-pot ipso-iodination Suzuki coupling. The title compounds represent a novel type of tunable luminophore. Structure-property relationships for 6-aryl-indolo[3,2-a]phenazines obtained from Hammett correlations with σp+ substituent parameters indicate that emission maxima, Stokes shifts, and fluorescence quantum yields can be fine-tuned by the remote para-aryl substituent. Furthermore, indolo[3,2-a]phenazines were found to exhibit interesting activities against medically relevant pathogens such as the Apicomplexa parasite Toxoplasma gondii with an IC50 of up to 0.67±0.13 μM. Thus, these compounds are promising candidates for novel anti-parasitic therapies.  相似文献   

3.
The novel reaction system comprising air/NH4NO3(cat.)/I2/H2SO4(cat.) is introduced as a simple, safe, cheap, efficient, and regioselective mediator for direct aerobic oxidative α-iodination of aryl, heteroaryl, alkyl, and cycloalkyl methyl ketones. The reaction system enabled the moderate to quantitative regioselective iodination of a large range of different methyl ketone derivatives including those bearing oxidizable heteroatom (S, N) substituents. Several activated aromatic compounds were also efficiently and selectively iodinated. The practical applicability of the presented reaction system was shown on 20 mmol scale under ambient pressure and 100% conversion of substrate was achieved.  相似文献   

4.
The mass spectra of benzenephosphonic and benzenephosphonous acids are readily observable under normal operating conditions and, at low sample temperatures (50 to 85°C), the 70 eV electron-impact degradations are characteristic. The phosphonic acid shows peaks for the molecular ion at 158 amu and for characteristic degradation fragments at 141 (C6H5PO2H), 94 (C6H6O), 78 to 7 (C6H6, C6H5), 65 (H3PO2, C5H5), 51 (C4H3), 47 (PO) and 39 (C3H3) amu. Above 120°, however, and after a pressure surge indicative of a thermal dehydration in the sample, a peak at 420 amu associated with the cyclic, trimeric anhydride, (C6H5PO2)3, is observed along with a characteristic set of fragment peaks at 373, 357, 343, 327, 280, 262, 233, 216 and 199 amu, whose interrelations are summarized in Scheme 1. The phosphonous acid, at 75°C and at 70 eV, shows peaks for the molecular ion at 142 amu and for characteristic degradation fragments at 124 (C6H5PO), 111 to 107 (C6H5PH ± 2H), 94 (C6H6O), 78 to 7 (C6H6, C6H5), 65 (H3PO2, C5H5), 51 (C4H3), 47 (PO) and 39 (C3H3) amu. The phenylphosphine is apparently formed by rearrangement in the excited state after electron-impact rather than by thermal disproportionation in the sample as the latter requires the formation of relatively more of the phosphonic acid than is observed. At higher sample temperatures (120°C) somewhat increased amounts of the phosphonic acid, presumably formed by partial disproportionation in the sample, are observed. Accurate mass assignments and broad metastables confirm the postulated fragmentation processes.  相似文献   

5.
Liquid xenon difluoride at 140°C does not react with zirconium or hafnium tetrafluorides, neither does liquid xenon hexafluoride at 60°C. Therefore reactions between the corresponding hydrazinium fluorometalates or ammonium fluorometalates and xenon difluoride and xenon hexafluoride, respectively, were carried out. N2H6ZrF6 and N2H6HfF6 react with xenon difluoride at 60°C again yielding only the corresponding tetrafluorides, while the analogous reaction with (NH4)2ZrF6 and (NH4)2HfF6 proceeds at 170°C yielding the corresponding ammonium pentafluorometalates, which are stable and do not react further with excessive xenon difluoride up to 200°C.The reaction between N2H6ZrF6 or N2H6HfF6 and xenon hexafluoride proceeds at room temperature yielding a series of thermally unstable compounds of the type mXeF6.MF4 (M = Zr, Hf) where m ? 6. The final products which are stable at room temperature are XeF6.MF4 (M = Zr,Hf). Spectroscopic evidence suggests that these compounds are salts of a XeF+5 cation squashed between a polymeric anion of the type (MF5)x-x.  相似文献   

6.
Neutron diffraction, at 2 K, of R-NiF3 indicates the formulation approaches NiIINiIVF6, with NiII − F = 1.959(3) and NiIV − F = 1.811(3) Å, but 295 K data allow for only a slight increase in any NiIII. Relatives have been precipitated from liquid anhydrous HF, at ≤ 20 °C, by adding K2NiF6 to M(SbF6)2 (M = Co, Cu, Zn) or M(AsF6)2 (M = Fe). CuNiF6 like NiNiF6 is metastable and loses F2 easily, above 40 °C. CuNiF6 is reduced by Xe or C3F6 at −20 °C; CoNiF6 by H2 at 350 °C, each giving pseudo-rutile MNiF4. Magnetic data indicate the dominant formulation is MIINiIVF6 (Ni(IV) low spin d6) with field dependence in CoNiF6 (≤ 220 K) and FeNiF6 (≤ 295 K).  相似文献   

7.
Racemic 3-methoxyphenyl(1-naphthyl)phenylphosphine 1 was effectively resolved via an oxidative resolution procedure utilizing l-menthyl bromoacetate as the resolving agent to give enantiopure 3-methoxyphenyl(1-naphthyl)phenylphosphine oxide (R)-2 in 41% yield. Reduction of the resolved (R)-4 with HSiCl3/NEt3 provided the corresponding phosphine (R)-1 in >97% ee. Ortho-iodination of the enantiopure (R)-4 followed by Ullmann coupling of the resulting iodoarylphosphine oxide gave a P-stereogenic and atropoisomeric biphenyl diphosphine dioxide as a single diastereoisomer. The latter transformation constitutes the first example of an effective transfer of a P-centered chirality to an axial chirality of the atropoisomeric biaryl system. The absolute configurations of the resolved phosphine and the atropoisomeric biaryl system have also been established.  相似文献   

8.
Polymorphism of SrTa2O6 Orthorhombic SrTa2O6 is a new low temperature modification related to orthorhombic CaTa2O6. SrTa2O6(orh.) was obtained when the wellknown modification SrTa2O6(TTB) which is related to the tetragonal tungsten bronzes was heated in the presence of a transporting agent (chlorine) or a mineralizer (melt of B2O3) at temperatures below 1150°C. It could be prepared by the reaction of a 1:1 mixture of Sr(NO3)2 or SrCO3 with Ta2O5 in a sealed quartz glass tube as well. SrTa2O6(orh.) also occurred as an intermediate phase of the reaction of the corresponding 1:2 mixture at temperatures below 900°C (e. g. 840°C). Indexing of Guinier powder patterns led to the following unit cell: a = 11.006 Å, b = 7.638 Å, c = 5.622 Å. At temperatures above 1220°C SrTa2O6(orh.) changes (in air) to SrTa2O6(TTB). A reversal of this transition could not be achieved without the presence of a mineralizer or a transporting agent. CaxSr1?xTa2O6 solid solutions of the low temperature form could not definitely be established. However, at 1300°C solid TTB solutions of CaxSr1?xTa2O6 were formed. For x > 0.05 the TTB unit cells are orthorhombically distorted. For x ≥ 0.85 the x-ray powder patterns of the solid solutions looked like the one of CaTa2O6(orh.) and no TTB-structure was observed at 1300°C.  相似文献   

9.
Liquid xenon difluoride at 140°C does not react with aluminium, gallium, and indium trifluorides, neither does liquid xenon hexafluoride at 60°C. Therefore the reactions between the corresponding hydrazinium fluorometalates (N2H6AlF5, N2H6GaF5 and N2H5InF4) and XeF2 and XeF6 were carried out. N2H6AlF5, N2H6GaF5 and N2H5InF4 react with XeF2 at 60°C (at 25°C in the case of indium) yielding only the corresponding trifluorides, while the reaction with XeF6 proceeds at room temperature (at - 25°C in the case of indium) yielding XeF6.2AlF3, XeF6.GaF3 and xenon(VI) fluoroindate(III) contaminated with indium trifluoride. Spectroscopic evidence suggests that these compounds are salts of the XeF+5 cation squashed between polymeric anions of the type (M2F7)x-x or (MF4)x-x.  相似文献   

10.
Molecular iodine has been used for the regioselective, one pot, direct synthesis of 3-iodoflavones from 2′-allyloxy chalcones, 2′-hydroxy chalcones and flavones. Allyl deprotection, cyclization dehydrogenation and α-iodination of 2′-allyloxychalcones has been achieved in a single step to offer 3-iodoflavones.  相似文献   

11.
Condensed Phosphates of Melamine The title compounds with the formulae (C3H6N6)n · Hn+2PnO3n+1 (linear phosphates, n = 2; 3) and (C3H6N6 · HOP3)m (cyclic phosphates, m = 3; 4; 6; 8 and high polymeric phosphate) are obtained as crystalline hydrates by interaction of the corresponding sodium phosphates with stoichiometric amounts of melamine hydrochloride and hydrochloric acid or melamine hydrochloride in aqueous solution. With the exception of (C3H6N6 · HPO3)4 · 6H2O ( I ) these hydrates decompose at ~100°C forming a mixture of mono and diphosphate which transforms at ~200°C into pure melamine diphosphate and at ~250°C into melamine polyphosphate. In contrast to this I froms at ~100°C the anhydrous melamine tetrametaphosphate which converts at ~150°C into melamine polyphosphate. Melamine diphosphate and polyphosphate are also formed on heating melamine monophosphate C3H6N6 · H3PO4.  相似文献   

12.
Regioselective Oxidations, Regioselective Halogenations and Carbene Reactions of Sugar Derivatives Bearing a Thioether Group Regioselective stoechiometrically controlled procedures are described for the oxidation of thiosugars either at the sulfur atom (to sulfoxides or sulfones) or at a hydroxymethylene group (to ketosugars). Ruthenium tetraoxide reacted at both sites. Chloration (SO2Cl2) of β-ketothioether sugar derivative 3 took place exclusively at C(6). Evidence is given that a chlorosulfonium intermediate C was formed when the dichloroketothiosugar derivative 6 was treated with SO2Cl2. The carbene generated from the tosylhydrazone 16 rearranged to the enoses 17–20 , the migrating group coming in equal proportions from C(4) and C(6). Some stereochemical aspects of these reactions are discussed.  相似文献   

13.
Carbides, such as η-Ni6Mo6C, are considered as low-cost substitutes for noble metal catalysts for present applications in hydrodesulfurization and for a possible future sulfur-tolerant fuel cell anode catalyst. Most synthesis methods set the carbon content of the carbides by a carbon-based atmosphere or solid carbon in the synthesis. We show here that β-Mo2C and η-Ni6Mo6C can be synthesized using a Pechini process, simply by heating metal acetates mixed with citric acid and ethylene glycol in one step under H2 with the only source of carbon being the precursor solution. The β-Mo2C forms when heating a Mo-acetate precursor at 850 °C. When using Ni- and Mo-acetates, β-Mo2C forms at 700 °C and lower temperatures, while η-Ni6Mo6C forms during heating at 800-900 °C. The η-Ni6Mo6C has a surface area of 95.5 m2 g−1 and less than 10 m2 g−1 when prepared at 800 and 900 °C, respectively. Some Ni3C, Ni, and NiC impurities are also present in the nanostructured η-Ni6Mo6C that was prepared at 900 °C. The η-Ni6Mo6C materials made by the Pechini process are compared with those made from a traditional synthesis, using metal organic precursors at 1000 °C under CO/CO2 mixtures with a carbon activity of 0.011. Our results imply that H2 and the Pechini process can be used to achieve carbon activities similar to those obtained by methods using gaseous or solid carbon sources.  相似文献   

14.
制备了RECl3.3H2O(RE=Pr,Gd)与18C6的固态配合物,其化学组成为:RECl3,18C6.3H2O。对其进行了IR,溶解度、DTG和TG分析,推测了热分解机理,测量了298.15K时18C6及两种配合物在无水乙醇中的积分,及RECl3,3H2O在18C6-C2H2OH溶液中的溶解配位热效应,依据本文所设计的热化学循环,求得了RECl3,3H2O(s)与18C6(s)生成RECl3,  相似文献   

15.
The reactions of the aromatic thioketone 4,4′‐dimethoxythiobenzophenone ( 1 ) with three monosubstituted oxiranes 3a – c in the presence of BF3⋅Et2O or SnCl4 in dry CH2Cl2 led to the corresponding 1 : 1 adducts, i.e., 1,3‐oxathiolanes 4a – b with R at C(5) and 8c with Ph at C(4). In addition, 1,3‐dioxolanes 7a and 7c , and the unexpected 1 : 2 adducts 6a – b were obtained (Scheme 2 and Table 1). In the case of the aliphatic, nonenolizable thioketone 1,1,3,3‐tetramethylindane‐2‐thione ( 2 ) and 3a – c with BF3⋅Et2O as catalyst, only 1 : 1 adducts, i.e. 1,3‐oxathiolanes 10a – b with R at C(5) and 11a – c with R or Ph at C(4), were formed (Scheme 6 and Table 2). In control experiments, the 1 : 1 adducts 4a and 4b were treated with 2‐methyloxirane ( 3a ) in the presence of BF3⋅Et2O to yield the 1 : 2 adduct 6a and 1 : 1 : 1 adduct 9 , respectively (Scheme 5). The structures of 6a , 8c , 10a , 11a , and 11c were confirmed by X‐ray crystallography (Figs. 15). The results described in the present paper show that alkyl and aryl substituents have significant influence upon the regioselectivity in the process of the ring opening of the complexed oxirane by the nucleophilic attack of the thiocarbonyl S‐atom: the preferred nucleophilic attack occurs at C(3) of alkyl‐substituted oxiranes (O−C(3) cleavage) but at C(2) of phenyloxirane (O−C(2) cleavage).  相似文献   

16.
Two ruthenium acetylide complexes [Ru]?C≡C?C≡C?C(OR)(C3H5)2 ( 2 , R=H and 2 a , R=CH3; [Ru]=Cp(PPh3)2Ru) each with two cyclopropyl rings were synthesized from TMS?C≡C?C≡C?C(OH)(C3H5)2 ( 1 ; TMS=trimethylsilyl). Treatments of 2 and 2 a with allyl halide in the presence of KPF6 afforded the vinylidene complexes 3 and 3 a , respectively. When NH4PF6 was used, instead of KPF6, additional ring‐opening reaction took place on one of the three‐membered ring. Treatment of [Ru]Cl with 1,3‐butadiyne ( 6 ), bearing an epoxide ring, afforded acetylide complex 7 with a furyl ring. Treatment of 2 a with Ph3CPF6 presumably afforded pentatetraenylidene complex {[Ru]=C=C=C=C=C(C3H5)2}[PF6] ( 10 ), which was not isolated. Additions of various alcohols in a solution of 10 generated a number of disubstituted allenylidene complexes {[Ru]=C=C=C(OR)?C=C(C3H5)2}[PF6] ( 11 ). Treatment of 11 with K2CO3 afforded the acetylide complex 12 bearing a carbonyl group, characterized by single X‐ray diffraction analysis. Addition of a primary amine to 10 caused cleavage of the farthermost C=C bond and several allenylidene complexes {[Ru]=C=C=C(Me)(NHR)}[PF6] ( 18 ) were isolated.  相似文献   

17.
The solvolysis rates and products of the tertiary 2-methyl-2-exo- and -2-endo-norbornyl 2,4-dinitrophenyl ethers 1 and 2 , (X = 2,4-(NO2)22C6H3O) have been determined. The different sensitivities of the rates of these ethers to the inductive effect of substituents at C(6) indicate that graded bridging of C(2) by C(6) occurs in the ionization of the exo-ethers 1 , not, however, in the ionization of the endo-ethers 2. In both cases hydrolysis leads to 2-methyl-2-exo-norbornanols only. Consequently, substitution takes place with retention at C(2) in the exo-series 1 and with inversion at C(2) in the endo-series 2. It is concluded that stereoelectronic and polar effects, rather than steric bulk effects, determine the high exo/endo rate ratios of the parent norbornyl derivatives 1a and 2a .  相似文献   

18.
The transformation of the c-acetic-acid chain of hexamethyl Coα, Coβ-dicyanocobyrinate into an ethyl group (→ 2 ) as well as the synthesis of the pentadecaalkyl-cobalticorrin 6d from commercial cyanocobalamin are described. On reaction of 2 or 6d with O2 in the presence of ascorbic acid, migration of the CH3 group at C(5) to the vicinal position C(6) takes place concomitantly with the introduction of a carbonyl group at C(5).  相似文献   

19.
Reactions of [Ru{C=C(H)-1,4-C6H4C≡CH}(PPh3)2Cp]BF4 ([ 1 a ]BF4) with hydrohalic acids, HX, results in the formation of [Ru{C≡C-1,4-C6H4-C(X)=CH2}(PPh3)2Cp] [X=Cl ( 2 a-Cl ), Br ( 2 a-Br )], arising from facile Markovnikov addition of halide anions to the putative quinoidal cumulene cation [Ru(=C=C=C6H4=C=CH2)(PPh3)2Cp]+. Similarly, [M{C=C(H)-1,4-C6H4-C≡CH}(LL)Cp ]BF4 [M(LL)Cp’=Ru(PPh3)2Cp ([ 1 a ]BF4); Ru(dppe)Cp* ([ 1 b ]BF4); Fe(dppe)Cp ([ 1 c ]BF4); Fe(dppe)Cp* ([ 1 d ]BF4)] react with H+/H2O to give the acyl-functionalised phenylacetylide complexes [M{C≡C-1,4-C6H4-C(=O)CH3}(LL)Cp’] ( 3 a – d ) after workup. The Markovnikov addition of the nucleophile to the remote alkyne in the cations [ 1 a–d ]+ is difficult to rationalise from the vinylidene form of the precursor and is much more satisfactorily explained from initial isomerisation to the quinoidal cumulene complexes [M(=C=C=C6H4=C=CH2)(LL)Cp’]+ prior to attack at the more exposed, remote quaternary carbon. Thus, whilst representative acetylide complexes [Ru(C≡C-1,4-C6H4-C≡CH)(PPh3)2Cp] ( 4 a ) and [Ru(C≡C-1,4-C6H4-C≡CH)(dppe)Cp*] ( 4 b ) reacted with the relatively small electrophiles [CN]+ and [C7H7]+ at the β-carbon to give the expected vinylidene complexes, the bulky trityl ([CPh3]+) electrophile reacted with [M(C≡C-1,4-C6H4-C≡CH)(LL)Cp’] [M(LL)Cp’=Ru(PPh3)2Cp ( 4 a ); Ru(dppe)Cp* ( 4 b ); Fe(dppe)Cp ( 4 c ); Fe(dppe)Cp* ( 4 d )] at the more exposed remote end of the carbon-rich ligand to give the putative quinoidal cumulene complexes [M{C=C=C6H4=C=C(H)CPh3}(LL)Cp’]+, which were isolated as the water adducts [M{C≡C-1,4-C6H4-C(=O)CH2CPh3}(LL)Cp’] ( 6 a–d ). Evincing the scope of the formation of such extended cumulenes from ethynyl-substituted arylvinylene precursors, the rather reactive half-sandwich (5-ethynyl-2-thienyl)vinylidene complexes [M{C=C(H)-2,5-cC4H2S-C≡CH}(LL)Cp’]BF4 ([ 7 a – d ]BF4 add water readily to give [M{C≡C-2,5-cC4H2S-C(=O)CH3}(LL)Cp’] ( 8 a – d )].  相似文献   

20.
The dimesitylpropargylphosphanes mes2P?CH2?C≡C?R 6 a (R=H), 6 b (R=CH3), 6 c (R=SiMe3) and the allene mes2P?C(CH3)=C=CH2 ( 8 ) were reacted with Piers’ borane, HB(C6F5)2. Compound 6 a gave mes2PCH2CH=CH(B(C6F5)2] ( 9 a ). In contrast, addition of HB(C6F5)2 to 6 b and 6 c gave mixtures of 9 b (R=CH3) and 9 c (R=SiMe3) with the regioisomers mes2P?CH2?C[B(C6F5)2]=CRH 2 b (R=CH3) and 2 c (R=SiMe3), respectively. Compounds 2 b , c underwent rapid phosphane/borane (P/B) frustrated Lewis pair (FLP) reactions under mild conditions. Compound 2 c reacted with nitric oxide (NO) to give the persistent FLP NO radical 11 . The systems 2 b , c cleaved dihydrogen at room temperature to give the respective phosphonium/hydridoborate products 13 b , c . Compound 13 c transferred the H+/H? pair to a small series of enamines. Compound 13 c was also a metal‐free catalyst (5 mol %) for the hydrogenation of the enamines. The allene 8 reacted with B(C6F5)3 to give the zwitterionic phosphonium/borate 17 . The ‐PPh2‐substituted mes2P‐propargyl system 6 d underwent a typical 1,2‐P/B‐addition reaction to the C≡C triple bond to form the phosphetium/borate zwitterion 20 . Several products were characterized by X‐ray diffraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号