首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Single crystals of Tb4MGa12 (M=Pd, Pt) have been synthesized. The isostructural compounds crystallize in the cubic space group , with Z=2 and lattice parameters: a=8.5940(5) and 8.5850(3) Å for Tb4PdGa12 and Tb4PtGa12, respectively. The crystal structure consists of corner-sharing MGa6 octahedra and TbGa3 cuboctahedra. Magnetic measurements suggest that Tb4PdGa12 is an antiferromagnetic metamagnet with a Néel temperature of 16 K, while the Pt analog orders at TN=12 K.  相似文献   

2.
New complex phosphates of the general formula K2M0.5Ti1.5(PO4)3 (M=Mn, Co) have been obtained from the melting mixture of KPO3, K4P2O7, TiO2 and CoCO3·mCo(OH)2 or Mn(H2PO4)2 by means of a flux technique. The synthesized phosphates have been characterized by the single-crystal X-ray diffraction and the FTIR-spectroscopy. The compounds crystallize in the cubic system with the space group P213 and cell parameters a=9.9030(14) Å for K2Mn0.5Ti1.5(PO4)3 and a=9.8445(12) Å for K2Co0.5Ti1.5(PO4)3. Both phosphates are isostructural with the langbeinite mineral and contain four formula unit K2M0.5Ti1.5(PO4)3 per unit cell. The structure can be described using [M2(PO4)3] framework composed of two [MO6] octahedra interlinked via three [PO4] tetrahedra. The Curie-Weiss-type behavior is observed in the magnetic susceptibility.  相似文献   

3.
Magnetic diphase nanostructures of ZnFe2O4/γ-Fe2O3 were synthesized by a solvothermal method. The formation reactions were optimized by tuning the initial molar ratios of Fe/Zn. All samples were characterized by X-ray diffraction, thermogravimetric analysis, infrared spectroscopy, and Raman spectra. It is found that when the initial molar ratio of Fe/Zn is larger than 2, a diphase magnetic nanostructure of ZnFe2O4/γ-Fe2O3 was formed, in which the presence of ZnFe2O4 enhanced the thermal stability of γ-Fe2O3. Further increasing the initial molar ratio of Fe/Zn larger than 6 destabilized the diphase nanostructure and yielded traces of secondary phase α-Fe2O3. The grain surfaces of diphase nanostructure exhibited a spin-glass-like structure. At room temperature, all diphase nanostructures are superparamagnetic with saturation magnetization being increased with γ-Fe2O3 content.  相似文献   

4.
A new 1,6-hexyldiamine heptaborate, [H3N(CH2)6NH3][B7O10(OH)3] (1), has been solvothermally synthesized and characterized by single-crystal X-ray diffraction, FTIR, elemental analysis, and thermogravimetric analysis. Compound 1 crystallizes in monoclinic system, space group P21/n with a=8.042(2) Å, b=20.004(4) Å, c=10.103(2) Å, and β=90.42(3)°. The anionic [B7O10(OH)3]n2n layers are interlinked via hydrogen bonding to form a 3D supramolecular network containing large channels, in which the templated [H3N(CH2)6NH3]2+ cations are located.  相似文献   

5.
Three new compounds Ca(HF2)2, Ba4F4(HF2)(PF6)3 and Pb2F2(HF2)(PF6) were obtained in the system metal(II) fluoride and anhydrous HF (aHF) acidified with excessive PF5. The obtained polymeric solids are slightly soluble in aHF and they crystallize out of their aHF solutions. Ca(HF2)2 was prepared by simply dissolving CaF2 in a neutral aHF. It represents the second known compound with homoleptic HF environment of the central atom besides Ba(H3F4)2. The compounds Ba4F4(HF2)(PF6)3 and Pb2F2(HF2)(PF6) represent two additional examples of the formation of a polymeric zigzag ladder or ribbon composed of metal cation and fluoride anion (MF+)n besides PbF(AsF6), the first isolated compound with such zigzag ladder. The obtained new compounds were characterized by X-ray single crystal diffraction method and partly by Raman spectroscopy. Ba4F4(HF2)(PF6)3 crystallizes in a triclinic space group P1¯ with a=4.5870(2) Å, b=8.8327(3) Å, c=11.2489(3) Å, α=67.758(9)°, β=84.722(12), γ=78.283(12)°, V=413.00(3) Å3 at 200 K, Z=1 and R=0.0588. Pb2F2(HF2)(PF6) at 200 K: space group P1¯, a=4.5722(19) Å, b=4.763(2) Å, c=8.818(4) Å, α=86.967(10)°, β=76.774(10)°, γ=83.230(12)°, V=185.55(14) Å3, Z=1 and R=0.0937. Pb2F2(HF2)(PF6) at 293 K: space group P1¯, a=4.586(2) Å, b=4.781(3) Å, c=8.831(5) Å, α=87.106(13)°, β=76.830(13)°, γ=83.531(11)°, V=187.27(18) Å3, Z=1 and R=0.072. Ca(HF2)2 crystallizes in an orthorhombic Fddd space group with a=5.5709(6) Å, b=10.1111(9) Å, c=10.5945(10) Å, V=596.77(10) Å3 at 200 K, Z=8 and R=0.028.  相似文献   

6.
The compound previously reported as Ba2Ti2B2O9 has been reformulated as Ba3Ti3B2O12, or Ba3Ti3O6(BO3)2, a new barium titanium oxoborate. Small single crystals have been recovered from a melt with a composition of BaTiO3:BaTiB2O6 (molar ratio) cooled between 1100°C and 850°C. The crystal structure has been determined by X-ray diffraction: hexagonal system, non-centrosymmetric space group, a=8.7377(11) Å, c=3.9147(8) Å, Z=1, wR(F2)=0.039 for 504 unique reflections. Ba3Ti3O6(BO3)2 is isostructural with K3Ta3O6(BO3)2. Preliminary measurements of nonlinear optical properties on microcrystalline samples show that the second harmonic generation efficiency of Ba3Ti3O6(BO3)2 is equal to 95% of that of LiNbO3.  相似文献   

7.
The synthesis, structure, and physical properties of five R-type Ru ferrites with chemical formula BaMRu5O11 (M=Li and Cu) and BaM2Ru4O11 (M′=Mn, Fe and Co) are reported. All the ferrites crystallize in space group P63/mmc and consist of layers of edge sharing octahedra interconnected by pairs of face sharing octahedra and isolated trigonal bipyramids. For M=Li and Cu, the ferrites are paramagnetic metals with the M atoms found on the trigonal bipyramid sites exclusively. For M′=Mn, Fe and Co, the ferrites are soft ferromagnetic metals. For M′=Mn, the Mn atoms are mixed randomly with Ru atoms on different sites. The magnetic structure for BaMn2Ru4O11 is reported.  相似文献   

8.
The two new compounds, Sr4Cu3(AsO4)2(AsO3OH)4·3H2O (1) and Ba2Cu4(AsO4)2(AsO3OH)3(2), were synthesized under hydrothermal conditions. They represent previously unknown structure types and are the first compounds synthesized in the systems SrO/BaO-CuO-As2O5-H2O. Their crystal structures were determined by single-crystal X-ray diffraction [space group C2/c, a=18.536(4) Å, b=5.179(1) Å, c=24.898(5) Å, β=93.67(3)°, V=2344.0(8) Å3, Z=4 for 1; space group P42/n, a=7.775(1) Å, c=13.698(3) Å, V=828.1(2) Å3, Z=2 for 2]. The crystal structure of 1 is related to a group of compounds formed by Cu2+-(XO4)3− layers (X=P5+, As5+) linked by M cations (M=alkali, alkaline earth, Pb2+, or Ag+) and partly by hydrogen bonds. In 1, worth mentioning is the very short hydrogen bond length, D···A=2.477(3) Å. It is one of the examples of extremely short hydrogen bonds, where the donor and acceptor are crystallographically different. Compound 2 represents a layered structure consisting of Cu2O8 centrosymmetric dimers crosslinked by As1φ4 tetrahedra, where φ is O or OH, which are interconnected by Ba, As2 and hydrogen bonds to form a three-dimensional network. The layers are formed by Cu2O8 centrosymmetric dimers of CuO5 edge-sharing polyhedra, crosslinked by As1O4 tetrahedra. Vibrational spectra (FTIR and Raman) of both compounds are described. The spectroscopic manifestation of the very short hydrogen bond in 1, and ABC-like spectra in 2 were discussed.  相似文献   

9.
A new compound, β-Ba3YB3O9, has been attained through solid phase transition from α-Ba3YB3O9 at high temperatures. Differential thermal analysis (DTA) revealed the phase transition at about 1120°C, the melting temperature at about 1253°C. Its crystal structure has been determined from powder X-ray diffraction data. The refinement was carried out using the Rietveld method and the final refinement converged with Rp=10.5% and Rwp=13.7%. This compound belongs to the hexagonal space group R-3, with lattice parameters a=13.0441(1) Å and c=9.5291(1) Å. There are 6 formulas per unit cell and 7 atoms in the asymmetric unit. The structure of β-Ba3YB3O9 is built up from Ba(Y)O8, BaO6 and YB6O18 units formed by one YO6 octahedron and six BO3 triangles with shared O atoms.  相似文献   

10.
In the system BaF2/BF3/PF5/anhydrous hydrogen fluoride (aHF) a compound Ba(BF4)(PF6) was isolated and characterized by Raman spectroscopy and X-ray diffraction on the single crystal. Ba(BF4)(PF6) crystallizes in a hexagonal space group with a=10.2251(4) Å, c=6.1535(4) Å, V=557.17(5) Å3 at 200 K, and Z=3. Both crystallographically independent Ba atoms possess coordination polyhedra in the shape of tri-capped trigonal prisms, which include F atoms from BF4 and PF6 anions. In the analogous system with AsF5 instead of PF5 the compound Ba(BF4)(AsF6) was isolated and characterized. It crystallizes in an orthorhombic Pnma space group with a=10.415(2) Å, b=6.325(3) Å, c=11.8297(17) Å, V=779.3(4) Å3 at 200 K, and Z=4. The coordination around Ba atom is in the shape of slightly distorted tri-capped trigonal prism which includes five F atoms from AsF6 and four F atoms from BF4 anions. When the system BaF2/BF3/AsF5/aHF is made basic with an extra addition of BaF2, the compound Ba2(BF4)2(AsF6)(H3F4) was obtained. It crystallizes in a hexagonal P63/mmc space group with a=6.8709(9) Å, c=17.327(8) Å, V=708.4(4) Å3 at 200 K, and Z=2. The barium environment in the shape of tetra-capped distorted trigonal prism involves 10 F atoms from four BF4, three AsF6 and three H3F4 anions. All F atoms, except the central atom in H3F4 moiety, act as μ2-bridges yielding a complex 3-D structural network.  相似文献   

11.
B(C6F5)3 as a catalyst and polymethylhydrosiloxane as a hydride source have been employed for the reductive dehydroxylation of Baylis-Hillman adducts wherein the hydride adds in an SN2′ manner onto the unactivated allyl alcohol moiety with concomitant elimination of the hydroxy group along with double bond migration. The products formed were found to be E in the case of ester adducts and Z in the case of nitrile adducts.  相似文献   

12.
The crystal chemistry and crystallography of the compounds SrR2CuO5 (Sr-121, R=lanthanides) were investigated using the powder X-ray Rietveld refinement technique. Among the 11 compositions studied, only R=Dy and Ho formed the stable SrR2CuO5 phase. SrR2CuO5 was found to be isostructural with the “green phase”, BaR2CuO5. The basic structure is orthorhombic with space group Pnma. The lattice parameters for SrDyCuO5 are a=12.08080(6) Å, b=5.60421(2) Å, c=7.12971(3) Å, V=482.705(4) Å3, and Z=8; and for the Ho analog are a=12.03727(12) Å, b=5.58947(7) Å, c=7.10169(7) Å, V=477.816(9) Å3, and Z=8. In the SrR2CuO5 structure, each R is surrounded by seven oxygen atoms, forming a monocapped trigonal prism (RO7). The isolated CuO5 group forms a distorted square pyramid. Consecutive layers of prisms are stacked in the b-direction. Bond valence calculations imply that residual strain is largely responsible for the narrow stability of the SrR2CuO5 phases with R=Dy and Ho only. X-ray powder reference diffraction patterns for SrDy2CuO5 and SrHo2CuO5 were determined.  相似文献   

13.
2-C-Acetoxymethyl glycal derivatives react with aliphatic alcohols in the presence of InCl3 (30 mol %) to furnish the corresponding 2-C-methylene glycosides in excellent yields and with exclusive α-selectivity except for the methyl 2-C-methylene glycosides, which are formed in ∼2:1 anomeric ratio in favour of the α-anomer. The reaction of 2-C-acetoxyglycals with phenols, however, produces the corresponding chiral carbohydrate-derived pyranobenzopyran derivatives via initial Ferrier rearrangement followed by tandem cyclization in excellent yields and moderate to high stereoselectivities in favour of the corresponding 10a-R-pyrano[2,3-b][1]benzopyran derivatives.  相似文献   

14.
Ag-doped n-type (Bi2Te3)0.9-(Bi2−xAgxSe3)0.1 (x=0-0.4) alloys were prepared by spark plasma sintering and their physical properties evaluated. When at low Ag content (x=0.05), the temperature dependence of the lattice thermal conductivity follows the trend of (Bi2Te3)0.9-(Bi2Se3)0.1; while at higher Ag content, a relatively rapid reduction above 400 K can be observed due possibly to the enhancement of scattering of phonons by the increased defects. The Seebeck coefficient increases with Ag content, with some loss of electrical conductivity, but the maximum dimensionless figure of merit ZT can be obtained to be 0.86 for the alloy with x=0.4 at 505 K, about 0.2 higher than that of the alloy (Bi2Te3)0.9-(Bi2Se3)0.1 without Ag-doping.  相似文献   

15.
Oxides in the system PrCo1−xMgxO3 (x=0.0, 0.05, 0.10, 0.15, 0.20, 0.25) were synthesized by citrate technique and characterized by powder X-ray diffraction and scanning electron microscope. All compounds have a cubic perovskite structure (space group ). The maximum ratio of doped Mg in the system PrCo1−xMgxO3 is x=0.2. Further doping leads to the segregation of Pr6O11 in PrCo1−xMgxO3. The substitution of Mg for Co improves the performance of PrCoO3 as compared to the electrical conductivity measured by a four-probe electrical conductivity analyzer in the temperature range from 298 to 1073 K. The substitution of Mg for Co on the B site may be compensated by the formations of Co4+ and oxygen vacancies. The electrical conductivity of PrCo1−xMgxO3 oxides increases with increasing x in the range of 0.0-0.2. The increase in conductivity becomes considerable at the temperatures ?673 K especially for x?0.1; it reaches a maximum at x=0.2 and 1073 K. From x>0.2 the conductivity of PrCo1−xMgxO3 starts getting lower. This is probably a result of the segregation of Pr6O11 in PrCo1−xMgxO3 , which blocks oxygen transport, and association of oxygen vacancies. A change in activation energy for all PrCo1−xMgxO3 compounds (x=0-0.25) was observed, with a higher activation energy above 573 K and a lower activation energy below 573 K. The reasons for such a change are probably due to the change of dominant charge carriers from Co4+ to Vö in PrCo1−xMgxO3 oxides and a phase transition mainly starting at 573 K.  相似文献   

16.
A systematic study of the chemical interaction of Ba2YCu3O6+y and Gd3NbO7 was conducted under two processing conditions: purified air (21% po2), and 100 Pa po2 (0.1% po2). Phases present along the pseudo-binary join Ba2YCu3O6z and Gd3NbO7 were found to be in two five-phase volumes within the system. Three common phases that are present in all samples are (Y,Gd)2Cu2O5, Ba(Y,Gd)2CuO5 and Cu2O or CuO (depending on the processing conditions). The assemblies of phases can be categorized in three regions, with Ba2YCu3O6+y: Gd3NbO7 ratios of (I)<5.5:4.5; (II)=5.5:4.5; and (III)>5.5:4.5. The lowest melting temperature of the system was determined to be ≈938 °C in air, and 850 °C at 100 Pa po2. Structure determinations of two selected phases, Ba2(GdxY1−x)NbO6 (Fmm, No. 225), and (GdxY3−x)NbO7 (C2221, No. 20 and Ccmm, No. 63), were completed using the X-ray Rietveld refinement technique. Reference X-ray powder diffraction patterns for selected phases of Ba2(GdxY1−x)NbO6 (x=0.2, 0.4, 0.6, and 0.8) and (GdxY3−x)NbO7 (x=0.6, 1.2, 1.8, 2.4 and 3) have been prepared for inclusion in the Powder Diffraction File (PDF).  相似文献   

17.
The structure of orthorhombic rare earth titanates of La2TiO5 and Nd2TiO5, where Ti cations are in five-fold coordination with oxygen, has been studied at high pressures by X-ray diffraction (XRD), Raman scattering measurements, and quantum mechanical calculations. Both XRD and Raman results indicated two pressure-induced phase transitions during the process. An orthorhombic super cell (a×b×2c) formed at a pressure between 6 and 10 GPa, and then transformed to a hexagonal high-pressure phase accompanied by partial decomposition. The hexagonal high-pressure phase is quenchable. Detailed structural analysis indicated that the five-coordinated TiO5 polyhedra remain during the formation of super cell, but the orthorhombic-to-hexagonal phase transition at high pressures is a reconstructive process, and the five-fold Ti-O coordination increased to more than 6. This phase transition sequence was verified by quantum mechanical calculations.  相似文献   

18.
Single crystals of Ca3CuRhO6, Ca3Co1.34Rh0.66O6 and Ca3FeRhO6 were synthesized by high temperature flux growth in molten K2CO3 and structurally characterized by single crystal X-ray diffraction. While Ca3Co1.34Rh0.66O6 and Ca3FeRhO6 crystallize with trigonal (rhombohedral) symmetry in the space group , Z=6: Ca3Co1.34Rh0.66O6a=9.161(1) Å, c=10.601(2) Å; Ca3FeRhO6a=9.1884(3) Å, c=10.7750(4) Å; Ca3CuRhO6 adopts a monoclinic distortion of the K4CdCl6 structure in the space group C2/c, Z=4: a=9.004(2) Å, b=9.218(2) Å, c=6.453(1) Å, β=91.672(5). All crystals of Ca3CuRhO6 examined were twinned by pseudo-merohedry. Ca3CuRhO6, Ca3Co1.34Rh0.66O6, and Ca3FeRhO6 are structurally related and contain infinite one-dimensional chains of alternating face-sharing RhO6 octahedra and MO6 trigonal prisms. In the monoclinic modification, the copper atoms are displaced from the center of the trigonal prism toward one of the rectangular faces adopting a pseudo-square planar configuration. The magnetic properties of Ca3CuRhO6, Ca3Co1.34Rh0.66O6, and Ca3FeRhO6 are discussed.  相似文献   

19.
The actual oxygen environment of the tungsten dopant in the Ba2In2−xWxO5+3x/2 solid solution was revealed by combining X-ray absorption spectroscopy at the tungsten LI and LIII edges and at the indium LI edge. Whatever the substitution ratio, the tungsten atoms exhibit a regular octahedral environment. When the substitution ratio increases, the oxygen vacancies are progressively filled until their total occupancy for x=2/3. For x?0.3, the perovskite structure is stabilised; the tungsten atoms are randomly distributed in the structure. Although X-ray diffraction revealed a cubic symmetry for these compositions, a local distortion of the indium environment is observed when a tungsten atom is in its surrounding.  相似文献   

20.
Based on the unique absorbent characters and three-dimensional network structure of polyacrylamide (PAM) superabsorbent polymer, a photocatalytic degradable TiO2/PAM composite was synthesized by an aqueous solution polymerization method with N,N′-methylene bisacrylamide as crosslinker, potassium peroxydisulfate as initiator, acrylamide as monomer, and TiO2 (P-25) as functional filler. The photocatalytic degradability of the composite was evaluated using methyl orange as photodegradation target, and the recovery and reproducibility of the composite was investigated. It was found that TiO2/PAM composite had a good photocatalytic degradability, the composite also possessed a good reproducibility of photocatalytic degradability, which is possible to be used in practical process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号