首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Chiral cyclopentadienyl ruthenium(II) complexes [CpRu(L1L3)Cl] (57) have been prepared by reaction of [CpRu(PPh3)2Cl] with chiral P,P-ligands (1R,2R)-1,2-bis(diphenylphosphinamino)cyclohexane (L1), N,N′-[bis-(3,3′-bis-tert-butyl-5,5′-bis-methoxy-1,1′-biphenyl-2,2′-diyl)phosphite]-(1R,2R)-1,2-diaminocyclohexane (L2) and N,N′-[bis-(R)-1,1′-binaphtyl-2,2′-diyl)phosphite]-(1R,2R)-1,2-diaminocyclohexane (L3). The molecular structures of 5 and 6 have been determined by single-crystal X-ray analysis. Studies on catalytic activity of the cations derived from (57) by treatment with AgSbF6, are also reported.  相似文献   

2.
A series of salen-type zirconium complexes of the general formula LZrCl2 (L = N,N′-ethylenebis(salicylideneiminate), 3a; N,N′-ethylenebis(3,5-di-tert-butylsalicylideneiminate), 3b; N,N′-ethylenebis(5-methoxysalicylideneiminate), 3c; N,N′-ethylenebis(5-chlorosalicylideneiminate), 3d; N,N′-ethylenebis(5-nitrosalicylideneiminate), 3e; N,N′-o-phenylenebis(salicylideneiminate), 4a; N,N′-o-phenylenebis(3,5-di-tert-butylsalicylideneiminate), 4b; N,N′-o-phenylenebis(5-methoxysalicylideneiminate), 4c; N,N′-o-phenylenebis(5-chloro-salicylideneiminate), 4d) were prepared. The crystal structures of 6- and 7-coordinate zirconium complexes 4b and [4b · OCMe2] were determined by X-ray crystallography, which reveals that a salen-type zirconium complex possesses a labile coordination site on the Zr center with a relatively stable framework and that the coordination and the dissociation of O-donor molecules occur readily at this site. The catalytic properties of 3(a-e) and 4(a-d) were studied for ethylene oligomerization in combination with Et2AlCl as co-catalyst. Complex 3c featuring a methoxy-substituted salen ligand displayed higher activity than its analogous precursors having chloro and nitro groups as substituents. The catalytic reactions by 3(a-e) and 4(a-d) gave C4-C10 olefins and low-carbon linear α-olefins in good selectivity.  相似文献   

3.
Five transition metal compounds containing arenesulfonates and 4,4′-bipy ligands, namely [Zn2(N,N′-4,4′-bipy)(N-4,4′-bipy)2(H2O)8](bpds)2 · 5H2O (1), [Ag2(N,N′-4,4′-bipy)2(bpds)] (2), [Cd(N,N′-4,4′-bipy)(H2O)4]2(4-abs)4 · 5H2O (3), [Cu(N,N′-4,4′-bipy) (O-bs)2(H2O)2] · 4H2O (4), and [Zn(N,N′-4,4′-bipy)2(H2O)2](4,4′-bipy)(bs)2 · 4H2O (5) (4,4′-bipy = 4,4′-bipyridine, bpds = 4,4′-biphenyldisulfonate, 4-abs = 4-aminobenzenesulfonate, bs = benzenesulfonate), have been synthesized and characterized by X-ray single crystal diffraction, elemental analyses and TG analyses, in order to investigate the coordination chemistry of arenesulfonates and 4,4-bipy, as well as to construct novel coordination frameworks via mixed-ligand strategy. Compounds 2, 4 and 5 could be obtained via hydrothermal or aqueous reactions. Compound 1 forms a binuclear octahedral metal complex. Compounds 24 form polymeric chains. Compound 5 consists of 2D square grids with one intercalated 4,4′-bipy molecule. Weak Ag–Ag interactions are observed in compound 2. These complexes show great structural varieties and there are three different coordination modes observed for both the 4,4′-bipy and the sulfonate ligands.  相似文献   

4.
The syntheses of seven flexible bidentate bis-pyridyl diamide and four monodentate pyridyl amide ligands containing central amide units are described. The bis-pyridyl ligands were prepared in one step from commercially available compounds in moderate to good yield. These compounds all possess external metal coordinating pyridyl groups and internal amide functionalities, with the potential to bind anions. Crystal structures of six of the bis-pyridyl diamide ligands are described. The four compounds with xylene cores N,N′-[1,3-phenylenebis(methylene)]bis-3-pyridinecarboxamide 1, N,N′-[1,3-phenylenebis(methylene)]bis-4-pyridinecarboxamide 2, N,N′-[1,4-phenylenebis(methylene)]bis-3-pyridinecarboxamide 3 and N,N′-[1,4-phenylenebis(methylene)]bis-4-pyridinecarboxamide 4 crystallize with extensive amide N-H?OC hydrogen bonding between the diamide compounds, giving rise to two and three dimensional hydrogen bonded networks. N,N′-Bis(3-pyridylmethyl)benzene-1,3-dicarboxamide 5, the only compound with the amide groups directly attached to a central benzene core, was not able to be crystallised. N,N′-2,6-Bis(3-pyridylmethyl)pyridine dicarboxamide 6 and N,N′-2,6-bis(4-pyridylmethyl)pyridine dicarboxamide 7 have a mismatch of hydrogen bond donor and acceptor regions preventing ready involvement of the amide NH groups in network formation. For comparison we also prepared compounds N,N′-2′-propyl-6-(3-pyridylmethyl)pyridine dicarboxamide 10 and N,N′-2′-propyl-6-(4-pyridylmethyl)pyridine dicarboxamide 11 with two amide groups but only the one external donor pyridyl moiety, and compounds N-6-[(3-pyridylmethylamino)carbonyl]-2-pyridinecarboxylic acid methyl ester 8 and N-6-[(4-pyridylmethylamino)carbonyl]-2-pyridinecarboxylic acid methyl ester 9, which have only the one amide.  相似文献   

5.
Three unique propeller-shaped helicenyl amines compounds: N,N-diphenyl-N-naphtho[2,1-b]thieno[2,3-b:3′,2′-d]dithiophene-5-yl-amine (1), N-phenyl-N,N-di(naphtho[2,1-b]thieno[2,3-b:3′,2′-d]dithiophene-5-yl)amine (2), and N,N,N-tri(naphtho[2,1-b]thieno[2,3-b:3′,2′-d]dithiophene-5-yl)amine (3) were efficiently synthesized by Wittig reaction and oxidative photocyclization. The crystal structures of 1, 2 and molecular configuration optimization (DFT-B3LYP/6-31+G(d)) of 3 reveal that the steric hindrance from the moiety of trithia[5]helicene effectively forces the nitrogen atom and the three bonded carbon atoms to coplanar and the interplanar angles of the facing terminal thiophene ring and benzene ring becoming larger when the helical arm increased from 1 to 3. Electrochemical properties and UV–vis absorption behaviors of 1, 2, 3 were primarily determined by the moiety of trithia[5]helicene.  相似文献   

6.
The reaction of the labile compound [Re2(CO)8(CH3CN)2] with 2,3-bis(2-pyridyl)pyrazine in dichloromethane solution at reflux temperature afforded the structural dirhenium isomers [Re2(CO)8(C14H10N4)] (1 and 2), and the complex [Re2(CO)8(C14H10N4)Re2(CO)8] (3). In 1, the ligand is σ,σ′-N,N′-coordinated to a Re(CO)3 fragment through pyridine and pyrazine to form a five-membered chelate ring. A seven-membered ring is obtained for isomer 2 by N-coordination of the 2-pyridyl groups while the pyrazine ring remains uncoordinated. For 2, isomers 2a and 2b are found in a dynamic equilibrium ratio [2a]/[2b]  =  7 in solution, detected by 1H NMR (−50 °C, CD3COCD3), coalescence being observed above room temperature. The ligand in 3 behaves as an 8e-donor bridge bonding two Re(CO)3 fragments through two (σ,σ′-N,N′) interactions. When the reaction was carried out in refluxing tetrahydrofuran, complex [Re2(CO)6(C14H10N4)2] (4) was obtained in addition to compounds 1-3. The dinuclear rhenium derivative 4 contains two units of the organic ligand σ,σ′-N,N′-coordinated in a chelate form to each rhenium core. The X-ray crystal structures for 1 and 3 are reported.  相似文献   

7.
Zinc β-diketiminates containing the N,N′-chelating ligand [{N(SiMe3)C(Ph)}2CH] (≡LL) [Zn(LL)(μ-Cl)]2 (1) and [ZnEt(LL)thf] (2) were prepared from 2ZnCl2 + [Li(LL)]2 and ZnEt2 + H(LL), respectively. The new phenols 2-(N-R-piperazinyl-N′-methyl)-4,6-di-tert-butylphenol [R = Ph (3a), Me (3b)] and 2,2-[μ-N,N′-piperazindiyldimethyl]-bis(4,6-di-tert-butylphenol) (4) were obtained from 2,4-tBu2C6H3OH, (CH2O)n and the appropriate piperazine. Zinc phenoxides 5, 7 and 8 were derived from 2ZnEt2 with 2(3a), 2(3b) and 4, respectively. Controlled methanolysis of 5 furnished the bis(phenoxo)zinc compound Zn[OC6H2tBu2-2,4-{CH2N(CH2CH2)2NPh}-6]2 (6). The X-ray structures of the crystalline zinc compounds 1, 2, 5, 6, 7 and 8, are presented; each of 5-8 contains two six-membered rings. The centrosymmetric molecule 1 has a rhomboidal (ZnCl)2 core with exceptionally different Zn-Cl and Zn-Cl′ bond lengths of 2.248(1) and 2.509(1) Å, respectively. None of 1, 2 or 5-8 was an effective catalyst for the copolymerisation of an oxirane and CO2.  相似文献   

8.
Two polar phosphinoferrocene ligands, 1′-(diphenylphosphino)ferrocene-1-carboxamide (1) and 1′-(diphenylphosphino)ferrocene-1-carbohydrazide (2), were synthesized in good yields from 1′-(diphenylphosphino)ferrocene-1-carboxylic acid (Hdpf) via the reactive benzotriazole derivative, 1-[1′-(diphenylphosphino)ferrocene-1-carbonyl]-1H-1,2,3-benzotriazole (3). Alternatively, the hydrazide was prepared by the conventional reaction of methyl 1′-(diphenylphosphino)ferrocene-1-carboxylate with hydrazine hydrate, and was further converted via standard condensation reactions to three phosphinoferrocene heterocycles, viz 2-[1′-(diphenylphosphino)ferrocen-1-yl]-1,3,4-oxadiazole (4), 1-[1′-(diphenylphosphino)ferrocen-1-carbonyl]-3,5-dimethyl-1,2-pyrazole (5), and 1-[1′-(diphenylphosphino)ferrocene-1-carboxamido]-3,5-dimethylpyrrole (6). Compounds 1 and 2 react with [PdCl2(cod)] (cod = η22-cycloocta-1,5-diene) to afford the respective bis-phosphine complexes trans-[PdCl2(L-κP)2] (7, L = 1; 8, L = 2). The dimeric precursor [(LNC)PdCl]2 (LNC = 2-[(dimethylamino-κN)methyl]phenyl-κC1) is cleaved with 1 to give the neutral phosphine complex [(LNC)PdCl(1P)] (9), which is readily transformed into a ionic bis-chelate complex [(LNC)PdCl(12O,P)][SbF6] (10) upon removal of the chloride ligand with Ag[SbF6]. Pyrazole 5 behaves similarly affording the related complexes [(LNC)PdCl(5P)] (12) and [(LNC)PdCl(52O,P)][SbF6] (13), in which the ferrocene ligand coordinates as a simple phosphine and an O,P-chelate respectively, while oxadiazole 4 affords the phosphine complex [(LNC)PdCl(4P)] (11) and a P,N-chelate [(LNC)PdCl(42N3,P)][SbF6] (14) under similar conditions. All compounds were characterized by elemental analysis and spectroscopic methods (multinuclear NMR, IR and MS). The solid-state structures of 1⋅½AcOEt, 2, 7⋅3CH3CN, 8⋅2CHCl3, 9⋅½CH2Cl2⋅0.375C6H14, 10, and 14 were determined by single-crystal X-ray crystallography.  相似文献   

9.
The transformation of N-substituted 3,4-dihydrospiro[quinoline-2,1′-cyclohexanes] 2 and 3 has been examined in strong acid media, at elevated temperature. It was demonstrated that the N-(γ-cyanopropyl) spirodihydroquinolines 2 in the presence of concentrated sulfuric acid or PPA underwent hydrolysis affording the γ-aminoacids 3. The spirodihydroquinoline ring rearrangement readily produces 4-(2-oxopyrrolidinyl-1)spiro[indane-1,1′-cyclohexanes] 5 in good yields. The structures of all synthesized compounds were established by means of homonuclear and inverse-detected 2D NMR experiments.  相似文献   

10.
Two sets of Schiff base ligands, set-1 and set-2 have been prepared by mixing the respective diamine (1,2-propanediamine or 1,3-propanediamine) and carbonyl compounds (2-acetylpyridine or pyridine-2-carboxaldehyde) in 1:1 and 1:2 ratios, respectively and employed for the synthesis of complexes with Ni(II) perchlorate and Ni(II) thiocyanate. Ni(II) perchlorate yields the complexes having general formula [NiL2](ClO4)2 (L = L1 [N1-(1-pyridin-2-yl-ethylidine)-propane-1,3-diamine] for complex 1, L2 [N1-pyridine-2-ylmethylene-propane-1,3-diamine] for complex 2 or L3 [N1-(1-pyridine-2-yl-ethylidine)-propane-1,2-diamine] for complex 3) in which the Schiff bases are mono-condensed terdentate whereas Ni(II) thiocyanate results in the formation of tetradentate Schiff base complexes, [NiL](SCN)2 (L = L4 [N,N′-bis-(1-pyridine-2-yl-ethylidine)-propane-1,3-diamine] for complex 4, L5 [N,N′-bis(pyridine-2-ylmethyline)-propane-1,3-diamine] for complex 5 or L6 [N,N′-bis-(1-pyridine-2-yl-ethylidine)-propane-1,2-diamine] for complex 6) irrespective of the sets of ligands used. Formation of the complexes has been explained by anion modulation of cation templating effect. All the complexes have been characterized by elemental analyses, spectral and electrochemical results. Single crystal X-ray diffraction studies confirm the structures of four representative members, 1, 3, 4 and 5; all of them have distorted octahedral geometry around Ni(II). The bis-complexes of terdentate ligands, 1 and 3 are the mer isomers and the complexes of tetradentate ligands, 4 and 5 possess trans geometry.  相似文献   

11.
We have measured, by means of NMR titrations, the binding constants for the complexes between hosts N,N′-bis(6-methylpyridin-2-yl)-1,3-benzenedicarboxamide (7) and 4-chloro-N,N′-bis(6-methylpyridin-2-yl)-2,6-pyridinedicarboxamide (8, hydrated) with biotin methyl ester (1), N,N′-dimethylurea (2), 2-imidazolidone (3), N,N′-trimethylenurea (4), barbital (5) and tolbutamide (6) as guests. Molecular Mechanics calculations (Monte Carlo Conformational Search, AMBER and OPLS force fields, MacroModel v.8.1) on the complexes formed between the foregoing guests and hosts 7 and 8, comparatively with 4-oxo-N,N′-bis(6-methylpyridin-2-yl)-1,4-dihydro-2,6-pyridinedicarboxamide (9a) have been carried out in order to determine the correlation between experimental and theoretical results and to understand the behaviour of the designed new hosts. Finally we have performed single point DFT [B3LYP/6-31G(d,p)] calculations on the optimised Molecular Mechanics geometries for the complexes between hosts 7-9 and water.  相似文献   

12.
The C,N-(trimethylsilyliminodiphenylphosphoranyl)silylmethylmetal complexes [Fe(L)2] (3), [Co(L)2] (4), [ZrCl3(L)]·0.83CH2Cl2 (5), [Fe(L)3] (6), [Fe(L′)2] (7) and [Co(L′)2] (8) have been prepared from the lithium compound Li[CH(SiMe2R)P(Ph)2NSiMe3] [1a, (R = Me) {≡ Li(L)}; 1b, (R = NEt2) {≡ Li(L′)}] and the appropriate metal chloride (or for 7, FeCl3). From Li[N(SiMe3)C(Ph)C(H)P(Ph)2NSiMe3] [≡ Li(L″)] (2), prepared in situ from Li(L) (1a) and PhCN, and CoCl2 there was obtained bis(3-trimethylsilylimino- diphenylphosphoranyl-2-phenyl-N-trimethylsilyl-1-azaallyl-N,N)cobalt(II) (9). These crystalline complexes 3-9 were characterised by their mass spectra, microanalyses, high spin magnetic moments (not 5) and for 5 multinuclear NMR solution spectra. The X-ray structure of 3 showed it to be a pseudotetrahedral bis(chelate), the iron atom at the spiro junction.  相似文献   

13.
The reaction of an equimolar mixture of N,N′-bis(2-pyridylmethyl)acetamidine (1) and di(tert-butyl)phosphane with dimethylzinc yields dinuclear bis(methylzinc) bis(2-pyridylmethyl)acetamidinate di(tert-butyl)phosphanide (2). A similar protocol allows the preparation of bis(alkylzinc) bis(2-pyridylmethyl)acetamidinate tert-butylamide [zinc-bound methyl (3) or trimethylsilylmethyl group (4)]. The reactions of 3 and 4 with diphenylsilane lead to the formation of insoluble dimeric bis(alkylzinc) N,N′-bis(2-pyridylmethyl)acetamidinate hydrides [zinc-bound methyl (5) or trimethylsilylmethyl group (6)]. These zinc hydrides decompose once dissolved under formation of elemental zinc thus hampering catalytic applications. Molecular structures of [(1)ZnCl2] as well as of the zinc complexes 2 to 6 are discussed.  相似文献   

14.
The use of succinamic acid (H2sucm) in CuII/N,N′,N″-donor [2,2′:6′,2″-terpyridine (terpy), 2,6-bis(3,5-dimethylpyrazol-1-yl)pyridine (dmbppy)] reaction mixtures yielded compounds [Cu(Hsucm)(terpy)]n(ClO4)n (1), [Cu(Hsucm)(terpy)(MeOH)](ClO4) (2), [Cu2(Hsucm)2(terpy)2](ClO4)2 (3), [Cu(ClO4)2(terpy)(MeOH)] (4), [Cu(Hsucm)(dmbppy)]n(NO3)n·3nH2O (5.3nH2O), and [CuCl2(dmbppy)]·H2O (6·H2O). The succinamate(−1) ligand exists in four different coordination modes in the structures of 13 and 5, i.e., the μ2OO′:κO″ in 1 and 5 which involves asymmetric chelating coordination of the carboxylato group and ligation of the amide O-atom leading to 1D coordination polymers, the μ22OO′ in 3 which involves asymmetric chelating and bridging coordination of the carboxylato group, and the asymmetric chelating mode in 2. The primary amide group, either coordinated in 1 and 5, or uncoordinated in 2 and 3, participate in hydrogen bonding interactions, leading to interesting crystal structures. Characteristic IR bands of the complexes are discussed in terms of the known structures and the coordination modes of the Hsucm ligands. The thermal decomposition of complex 5·3nH2O was monitored by TG/DTG and DTA measurements.  相似文献   

15.
Condensation of (R)-2,2′-diamino-1,1′-binaphthyl or (R)-6,6′-dimethylbiphenyl-2,2′-diamine with 2 equiv of 2-pyridine carboxaldehyde in toluene in the presence of molecular sieves at 70 °C gives (R)-N,N′-bis(pyridin-2-ylmethylene)-1,1′-binaphthyl-2,2′-diimine (1), and (R)-N,N′-bis(pyridin-2-ylmethylene)-6,6′-dimethylbiphenyl-2,2′-diimine (3), respectively, in good yields. Reduction of 1 with an excess of NaBH4 in a solvent mixture of MeOH and toluene (1:1) at 50 °C gives (R)-N,N′-bis(pyridin-2-ylmethyl)-1,1′-binaphthyl-2,2′-diamine (2) in 95% yield. Rigidity plays an important role in the formation of helicate silver(I) complexes. Treatment of 1, or 3 with 1 equiv of AgNO3 in mixed solvents of MeOH and CH2Cl2 (1:4) gives the chiral, dinuclear double helicate Ag(I) complexes [Ag2(1)2][NO3]2 (4) and [Ag2(3)2][NO3]2 · 2H2O (6), respectively, in good yields. While under the similar reaction conditions, reaction of 2 with 1 equiv of AgNO3 affords the chiral, mononuclear single helicate Ag(I) complex [Ag(2)][NO3] (5) in 90% yield. [Ag2(1)2][NO3]2 (4) can further react with excess AgNO3 to give [Ag2(1)2]3[NO3]2[Ag(CH3OH)(NO3)3]2 · 2CH3OH (7) in 75% yield. All compounds have been fully characterized by various spectroscopic techniques and elemental analyses. Compounds 1 and 5-7 have been further subjected to single-crystal X-ray diffraction analyses.  相似文献   

16.
Oxygenation of 2,5,9,12-tetra(tert-butyl)diacenaphtho[1,2-b:1′,2′-d]-thiophene (1, C40H44S) by peracids gave the cyclic sulfonic ester 4 (2,7,10,13-tetra(tert-butyl)diacenaphtho[1,2-c:1′,2′-e]oxathiin 5,5-dioxide, C40H44O3S) which, when heated in nitrobenzene, is converted into a complex, macrocyclic anhydride 3 (C80H88O3), which is derived from two molecules of 4. Further investigation found a likely intermediate in this reaction, 4,4′,7,7′-tetra(tert-butyl)-1,1′-biacenaphthylenylidene-2,2′-dione (5, C40H44O2), apparently formed from 4 by additional oxidation. Anhydride 3 plausibly arises by Diels-Alder reaction of 4 and 5 followed by several ring fragmentations. The structures of 3, 4, and 5 were unambiguously established by X-ray crystallography.  相似文献   

17.
Eight new compounds including 9′-[2-amino-3-(4″-O-methyl-α-rhamnopyranosyloxy) phenyl]nonanoic acid (1), 9′-[2-amino-3-(4″-O-methyl-α-ribopyranosyloxy)phenyl] nonanoic acid (2), 11′-[2-amino-3-(4″-O-methyl-α-rhamnopyranosyloxy)phenyl]undecanoic acid (3), 11′-[2-amino-3-(4″-O-methyl-α-ribopyranosyloxy)phenyl]undecanoic acid (4), 8-(4′-O-methyl-α-rhamnopyranosyloxy)-3,4-dihydroquinolin-2(1H)-one (5), 8-(4′-O-methyl-α-ribopyranosyloxy)-3,4-dihydroquinolin-2(1H)-one (6), 8-(4′-O-methyl-α-rhamnopyranosyloxy)-2-methyquinoline (7), and 8-(4′-O-methyl-α-ribopyranosyloxy)-2-methylquinoline (8) were isolated from Actinomadura sp. BCC27169. The chemical structures of these compounds were determined based on NMR and high-resolution mass spectroscopy. The absolute configurations of these monosaccharides were revealed by the hydrolysis of compounds 7 and 8. Compounds 3 and 8 exhibited antitubercular activity at MIC 50 μg/mL. Only compound 3 showed cytotoxicity against KB cell at IC50 18.63 μg/mL, while other isolated compounds were inactive at tested maximum concentration (50 μg/mL).  相似文献   

18.
Bisazocalix[4]arenes [N,N′-bis(5-azo-25,26,27-tribenzoyloxy-28-hydroxycalix[4]arene)benzene (1), N,N′-bis(5-azo-25,26,27-tribenzoyloxy-28-hydroxycalix[4]arene)biphenyl (2) and N,N′-bis(5-azo-25,26,27-tribenzoyloxy-28-hydroxycalix[4]arene)-2,2′-dinitro biphenyl (3)] have been synthesized from 25,26,27-tribenzoyloxy-28-hydroxycalix[4]arene by diazocoupling with the corresponding aromatic diamines (p-phenylenediamine, 4,4′-diamino biphenyl and 4,4′-diamino-2,2′-dinitrobiphenyl). Extraction studies of bisazocalix[4]arenes 1, 2, and 3 show no difference in their extraction behavior and selectivity, whereas azocalix[4]arenes are a poor extractant for heavy metal cations. The absorption spectra of the prepared bisazocalix[4]arenes are discussed, both the effect of varying pH and solvent upon the absorption ability of bisazocalix[4]arenes.  相似文献   

19.
Four new compounds [Ni2(4,4′-bpy)(3,4-bptc)(H2O)4]n (1), [Ni(4,4′-bpy)(3,4-H2bptc)(H2O)3]n (2), [Mn2(2,2′-bpy)4(3,4-H2bptc)2] (3) and {[Mn(1,10-phen)2(3,4-H2bptc)]·4H2O}n (4) (3,4-H4bptc=3,3′,4,4′-biphenyltetracarboxylic acid, 4,4′-bpy=4,4′-bipyridine, 2,2′-bpy=2,2′-bipyridine, 1, 10-phen=1, 10-phenanthroline), have been prepared and structurally characterized. In all compounds, the derivative ligands of 3,4-H4bptc (3,4-bptc4− and 3,4-H2bptc2−) exhibit different coordination modes and lead to the formation of various architectures. Compounds 1 and 2 display the three-dimensional (3D) framework: 1 shows a 3,4-connected topological network with (83)(85·10) topology symbol based on the coordination bonds while in 2, the hydrogen-bonding interactions are observed to connect the 1D linear chain generating a final 3D framework. 3 exhibits the 2D layer constructed from the hydrogen-bonding interactions between the dinuclear manganese units. Complex 4 shows the double layers motif through connecting the 1D zigzag chains with hydrogen-bonded rings. The thermal stability of 1-4 and magnetic property of 1 were also reported.  相似文献   

20.
Based on the versatile ligand 1H-3-(3-pyridyl)-5-(4-pyridyl)-1,2,4-triazole (3,4′-Hbpt) (1), a series of coordination compounds [Ni(3,4′-Hbpt)(ip)] (2), [Ni(3,4′-Hbpt)2(tp)(H2O)2] (3), [Ni2(3,4′-Hbpt)(5-NO2-ip)2(H2O)4] (4) and [Ni(3,4′-Hbpt)(pm)0.5(H2O)3]·2H2O (5) have been hydrothermally constructed through R-phenyldicarboxyl (R = H, NO2 and COOH) intervention effect (ip = isophthalic anion, tp = terephthalic anion, 5-NO2-ip = 5-NO2-isophthalic anion, pm = pyromellitic anion). Structural analysis reveals that 3,4′-Hbpt adopts μ-Npy, Npy coordination modes in two typical conformations in these target coordination compounds. In cooperation with the auxiliary ligands benzenedicarboxylate connectors, a variety of Ni(II) coordination networks such as 2-D layer with (4, 4) topology (2) 1-D chain (3), honeycomb (4) and 2-D helical chains (5) have been assembled. Theoretical calculation based on density functional theory (DFT) for ligand (1) is also employed to explicate the stability of the different conformations. Moreover, thermal stability of these crystalline materials is explored by TG-DTG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号