首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactions of ferrocenoylacetone with 2-(aminomethyl)pyridine and N-(2-hydroxyethyl)-1,2-diaminoethane afford the multidentate enaminones HL1 and H3L2, respectively. Reactions of copper acetate with the two enaminones generate the corresponding mixed-ligand complexes I and II, which are formulated as [CuL1(OAc)] and [Cu(H2L2)(OAc)], respectively. The structures of HL1, I and II have been determined by single-crystal X-ray crystallography. In complex I, HL1 acts as a monoanionic tridentate donor via the carbonyl oxygen, deprotonated enamine nitrogen and pyridyl nitrogen atoms, the acetate anion is monodentate and the coordination geometry of the central metal is square planar. In complex II, H3L2 is a monoanionic tetradentate ligand via the carbonyl oxygen, deprotonated enamine nitrogen, secondary amine nitrogen and hydroxy oxygen atoms, the acetate anion is monodentate and the coordination geometry of the central metal is a distorted trigonal bipyramid.  相似文献   

2.
The saltwater culture of a Penicillium chrysogenum strain isolated from the Mediterranean sponge Ircinia fasciculata yielded three new sorbicillin-derived compounds (1-3), whose structures were elucidated mainly by 2D NMR and mass spectrometry. Among them, sorbicillactones A (1) and B (2) are the first sorbicillinoid natural products that contain nitrogen. Compound 1 is anti-HIV active and it exhibits a strong cytotoxic activity against L5178y leukemic cells, combined with a relatively low toxicity to cervical carcinoma HeLa S3 cells and pheochromocytoma PC 12 cells. The absolute configurations of 1 and 2 were elucidated by quantum chemical calculation of circular dichroism (CD) spectra. Another compound isolated, sorbivinetone (3), might be an artifact derived from sorbicillinol (4) by Diels-Alder reaction with ethyl vinyl ether. Furthermore, the known sorbicillinoid fungal metabolites oxosorbicillinol (5), sorbicillin (6), and bisvertinolone (7) were identified, as well as the alkaloids meleagrine and roquefortine C. The biosynthetic origin of sorbicillactone A (1) from acetate, alanine, and methionine was investigated by feeding experiments with 13C-labeled precursors.  相似文献   

3.
The autoxidation of a mixture of 1,1-diarylsubstituted alkenes 4 and 4-hydroxy-1H-quinolin-2-ones 5 in the presence of a catalytic amount of manganese(III) acetate dihydrate in air gave 3,3-bis(2-hydroperoxyethyl)-1H-quinoline-2,4-diones 6 in 31-91% yields together with [4.4.3]propellane-type cyclic peroxides 7 (10-34%). A similar aerobic oxidation of 3-substituted quinolinones 8 yielded cyclic peroxide derivatives 9 and/or 3-hydroperoxyethylated quinolinediones 10 depending on the substituent. The structures of the bis(hydroperoxide) 6 (R1=Me, Ar=4-ClC6H4) and the [4.4.3]propellane 7 (R1=Me, Ar=Ph) have been corroborated by X-ray crystallography.  相似文献   

4.
Four new Stemona alkaloids, sessilifoliamides A-D (1-4), were isolated from the roots of Stemona sessilifolia, along with five known alkaloids, stenine (5), 2-oxostenine (6), stemoninoamide (7), tuberostemonone (8), and neotuberostemonol (9). The structures and absolute configurations of the new alkaloids were determined by the spectral studies (HRMS, IR, 1H, 13C, and 2D NMR), single-crystal X-ray analyses, and chemical correlations. The absolute configuration of 7 was also determined by the modified Mosher's method.  相似文献   

5.
Two new phlegmarane-type alkaloids, cermizines A (1) and B (2), three new quinolizidine alkaloids, cermizine C (3) and senepodines G (4) and H (5), and a new C16N2 type alkaloid consisting of a quinolizidine and a piperidine ring, cermizine D (6), as well as two new cernuane-type alkaloids, cernuine N-oxide (7) and lycocernuine N-oxide (8), have been isolated together with cernuine (9) and lycocernuine (10) from the club moss Lycopodium cernuum and L. chinense. The relative stereochemistry of 1-4 and 6, and the absolute stereochemistry of 5, 7, and 8 were elucidated by combination of NOESY correlations, modified Mosher's method, chemical transformations, and computational methods. Cermizine D (6) might be a biosynthetic intermediate of cernuane-type alkaloids such as 7-10.  相似文献   

6.
Amide coupling between [2-(diphenylphosphino)phenyl]methylamine and 1′-(diphenylphosphino)ferrocene-1-carboxylic acid (Hdpf) afforded a novel diphosphine-amide, 1-{N-[(2-(diphenylphosphino)phenyl)methyl]carbamoyl}-1′-(diphenylphosphino)ferrocene (1), which was subsequently studied as a ligand for palladium(II) complexes. Depending on the metal precursor, the following complexes were isolated: [PdCl2(12P,P′)] (2), [PdCl(Me)(12P,P′)] (3), [(μ-1){PdCl2(PBu3)}2] (4) and [(μ-1){PdCl(LNC)}2] (LNC = 2-[(dimethylamino-κN)methyl]phenyl-κC1), featuring this ligand either as a trans-chelating or as a P,P′-bridging donor. The crystal structure of 2·1.25CH2Cl2 was established by X-ray crystallography, corroborating that 1 coordinates as a trans-spanning diphosphine without any significant distortion to the coordination sphere. Complex 2 together with a catalyst prepared in situ from 1 and palladium(II) acetate were tested in Suzuki-Miyaura reaction of aryl bromides with phenylboronic acid in dioxane.  相似文献   

7.
Two polar phosphinoferrocene ligands, 1′-(diphenylphosphino)ferrocene-1-carboxamide (1) and 1′-(diphenylphosphino)ferrocene-1-carbohydrazide (2), were synthesized in good yields from 1′-(diphenylphosphino)ferrocene-1-carboxylic acid (Hdpf) via the reactive benzotriazole derivative, 1-[1′-(diphenylphosphino)ferrocene-1-carbonyl]-1H-1,2,3-benzotriazole (3). Alternatively, the hydrazide was prepared by the conventional reaction of methyl 1′-(diphenylphosphino)ferrocene-1-carboxylate with hydrazine hydrate, and was further converted via standard condensation reactions to three phosphinoferrocene heterocycles, viz 2-[1′-(diphenylphosphino)ferrocen-1-yl]-1,3,4-oxadiazole (4), 1-[1′-(diphenylphosphino)ferrocen-1-carbonyl]-3,5-dimethyl-1,2-pyrazole (5), and 1-[1′-(diphenylphosphino)ferrocene-1-carboxamido]-3,5-dimethylpyrrole (6). Compounds 1 and 2 react with [PdCl2(cod)] (cod = η22-cycloocta-1,5-diene) to afford the respective bis-phosphine complexes trans-[PdCl2(L-κP)2] (7, L = 1; 8, L = 2). The dimeric precursor [(LNC)PdCl]2 (LNC = 2-[(dimethylamino-κN)methyl]phenyl-κC1) is cleaved with 1 to give the neutral phosphine complex [(LNC)PdCl(1P)] (9), which is readily transformed into a ionic bis-chelate complex [(LNC)PdCl(12O,P)][SbF6] (10) upon removal of the chloride ligand with Ag[SbF6]. Pyrazole 5 behaves similarly affording the related complexes [(LNC)PdCl(5P)] (12) and [(LNC)PdCl(52O,P)][SbF6] (13), in which the ferrocene ligand coordinates as a simple phosphine and an O,P-chelate respectively, while oxadiazole 4 affords the phosphine complex [(LNC)PdCl(4P)] (11) and a P,N-chelate [(LNC)PdCl(42N3,P)][SbF6] (14) under similar conditions. All compounds were characterized by elemental analysis and spectroscopic methods (multinuclear NMR, IR and MS). The solid-state structures of 1⋅½AcOEt, 2, 7⋅3CH3CN, 8⋅2CHCl3, 9⋅½CH2Cl2⋅0.375C6H14, 10, and 14 were determined by single-crystal X-ray crystallography.  相似文献   

8.
Two tridentate N,N,O donor Schiff bases, HL1 (4-(2-ethylamino-ethylimino)-pentan-2-one) and HL2 (3-(2-amino-propylimino)-1-phenyl-butan-1-one) on reaction with CuII acetate in presence of triethyl amine yielded two basal-apical, mono-atomic acetate oxygen-bridging dimeric copper(II) complexes, [Cu2L12(OAc)2] (1), [Cu2L22(OAc)2] (2). Whereas two other similar tridentate ligands HL3 (4-(2-amino-propylimino)-pentane-2-one) and HL4 (3-(2-amino-ethylimino)-1-phenyl-butan-1-one) under the same conditions produced a mixture of the corresponding dimers and a one-dimensional alternating chain of the dimer and copper acetate moiety, [Cu4L32(OAc)6]n (3) and [Cu4L42(OAc)6]n (4), formed by a very rare μ3 bridging mode of the acetate ion. All four complexes (14) have been characterized by X-ray crystallography. The isotropic Hamiltonian, H = −JS1S2 has been used to interpret the magnetic data. Magnetic measurements of 1 and 2 in the temperature range 2–300 K reveal a very weak antiferromagnetic coupling for both complexes (J = −0.56 and −1.19 cm−1 for 1 and 2, respectively).  相似文献   

9.
Trimethylstannyl (diphenylphosphino)acetate (1), which is readily accessible from potassium (diphenylphosphino)acetate and trimethylstannyl chloride, may serve as the source of (diphenylphosphino)acetate anion in the preparation of coordination compounds. Thus, the reactions between [M(cod)Cl2] (M = Pd and Pt; cod = η22-cycloocta-1,5-diene) and two equivalents of 1 give [M(Ph2PCH2CO22O,P)2] (2 and 3), while the reaction of [{Pd(μ-Cl)Cl(PFur3)}2] (4; Fur = 2-furyl) with one equivalent of 1 yields [SP-4-3]-[PdCl(Ph2PCH2CO22O,P)(PFur3)] (5). The reactions of 1 with the dimers [{Rh(η5-C5Me5)Cl(μ-Cl)}2] and [{Ru(η6-1,4-MeC6H4(CHMe2))Cl(μ-Cl)}2] (at 1-to-metal ratio 1:1) produce O,P-chelated complexes as well, albeit as stable adducts with the liberated Me3SnCl: [RhCl(η5-C5Me5)(Ph2PCH2CO22O,P)] · Me3SnCl (6) and[RuCl(η6-1,4-MeC6H4(CHMe2))(Ph2PCH2CO22O,P)] · Me3SnCl (8). The related complexes with P-monodentate (diphenylphosphino)acetic acid, [RhCl25-C5Me5)(Ph2PCH2CO2H-κ,P)] (7) and [RuCl26-1,4-MeC6H4(CHMe2))(Ph2PCH2CO2H-κP)] (9), were obtained by bridge splitting in the dimers with the phosphinocarboxylic ligand. All new compounds were characterized by spectral methods and combustion analyses, and the structures of 2 · 3CH2Cl2, 3, 4, 5, 6 and 8 were determined by X-ray crystallography.  相似文献   

10.
Adele Cutignano 《Tetrahedron》2009,65(39):8161-995
Structural diversity of polypropionates arises from the amazing combination of acetate and propionate units. Feeding experiments with single and doubly 13C-labelled precursors prove that the Mediterranean slug Placida dendritica utilizes intact C3-units for the biosynthesis of placidenes (e.g., 1-5), prototypes of a family of pyrone-containing polypropionates largely represented in fungi and marine invertebrates. These results show that fungi and molluscs have elaborated two distinct polyketide pathways for the synthesis of similar or even identical compounds.  相似文献   

11.
Yousuke Yamada 《Tetrahedron》2008,64(33):7690-7694
Four new gelsedine-type oxindole alkaloids (1-4) were isolated from the leaves and branches of Gelsemium elegans, together with 10 known alkaloids. The structures of the new alkaloids were determined by spectroscopic analyses and partial synthesis from known compounds. Gelsecrotonidine (1), 14-hydroxygelsecrotonidine (2), and 11-methoxygelsecrotonidine (3) possess an additional C2 unit with an acetic acid residue compared to gelsenicine-related monoterpenoid indole alkaloids. 14-Hydroxygelsedilam (4) is an 18,19-nor-type monoterpenoid indole alkaloid.  相似文献   

12.
The reaction of N-(5-methyl-2-thienylmethylidene)-2-thiolethylamine (1) with Fe2(CO)9 in refluxing acetonitrile yielded di-(μ3-thia)nonacarbonyltriiron (2), μ-[N-(5-methyl-2-thienylmethyl)-η11(N);η11(S)-2-thiolatoethylamido]hexacarbonyldiiron (3), and N-(5-methyl-2-thienylmethylidene)amine (4). If the reaction was carried out at 45 °C, di-μ-[N-(5-methyl-2-thienylmethylidene)-η1(N);η1(S)-2-thiolethylamino]-μ-carbonyl-tetracarbonyldiiron (5) and trace amount of 4 were obtained. Stirring 5 in refluxing acetonitrile led to the thermal decomposition of 5, and ligand 1 was recovered quantitatively. However, in the presence of excess amount of Fe2(CO)9 in refluxing acetonitrile, complex 5 was converted into 2-4. On the other hand, the reaction of N-(6-methyl-2-pyridylmethylidene)-2-thiolethylamine (6) with Fe2(CO)9 in refluxing acetonitrile produced 2, μ-[N-(6-methyl-2-pyridylmethyl)-η1 (Npy);η11(N); η11(S)-2-thiolatoethylamido]pentacarbonyldiiron (7), and μ-[N-(6-methyl-2-pyridylmethylidene)-η2(C,N);η11(S)-2- thiolethylamino]hexacarbonyldiiron (8). Reactions of both complex 7 and 8 with NOBF4 gave μ-[(6-methyl-2-pyridylmethyl)-η1(Npy);η11(N);η11(S)-2-thiolatoethylamido](acetonitrile)tricarbonylnitrosyldiiron (9). These reaction products were well characterized spectrally. The molecular structures of complexes 3, 7-9 have been determined by means of X-ray diffraction. Intramolecular 1,5-hydrogen shift from the thiol to the methine carbon was observed in complexes 3, 7, and 9.  相似文献   

13.
Syntheses of rac/meso-{PhP(3-t-Bu-C5H3)2}Zr{Me3SiN(CH2)3NSiMe3} (rac-3/meso-3) and rac/meso-{PhP(3-t-Bu-C5H3)2}Zr{PhN(CH2)3NPh} (rac-4/meso-4) were achieved by metallation of K2[PhP(3-t-Bu-C5H3)2] · 1.3 THF (2) with Zr{RN(CH2)3NR}Cl2(THF)2 (where R = SiMe3 or Ph, respectively) using ethereal solvent. These isomeric pairs were characterized by 1H, 13C{1H}, and 31P{1H} NMR spectroscopy; rac-3 and rac-4 were also examined via single crystal X-ray crystallography. The structures of rac-3 and rac-4 are notable in the tendency of the cyclopentadienyl rings towards η3 coordination. While isolated samples of rac-3/meso-3 and rac-4/meso-4 slowly isomerize in tetrahydrofuran-d8 to equilibrium ratios, the isomerization rate for 3 is more than 15-fold greater than that for 4. In addition, equilibrium ratios are rapidly reached when isolated samples of rac-3/meso-3 and rac-4/meso-4 are exposed to tetrabutylammonium chloride in tetrahydrofuran-d8 solvent. We propose that a nucleophile (either chloride or the phosphine interannular linker) brings about dissociation of one cyclopentadienyl ring, thus promoting the rac/meso isomerization mechanism.  相似文献   

14.
New Lycopodium alkaloids, lyconadins C (1) and F (2), were isolated from the club moss Lycopodium complanatum. Lyconadin C (1) is a new C16N2-type Lycopodium alkaloid possessing unique fused-tetracyclic ring system consisting of a cycloheptene ring fused to a decahydroquinoline and pyridone rings. Lyconadin F (2) possesses a primary amide moiety in its molecular, which is the first example of Lycopodium alkaloids. Biogenetically, lyconadins C (1) and F (2) might be related to lyconadins A (4) and B (5). The structures and relative stereochemistry of 1 and 2 were elucidated on the basis of spectroscopic data. The absolute stereochemistry of 2 was elucidated by chemical correlations with lyconadin B (5) through hemiaminal form of lyconadin F (3).  相似文献   

15.
The syntheses and structures of a series of metal complexes, namely Cu2Cl4(L1)(DMSO)2·2DMSO (L1 = N,N′-bis(2-pyridinyl)-1,4-benzenedicarboxamide), 1; {[Cu(L2)1.5(DMF)2][ClO4]2·3DMF} (L2 = N,N′-bis(3-pyridinyl)-1,4-benzenedicarboxamide), 2; {[Cd(NO3)2(L3)]·2DMF} (L3 = N,N′-bis-(2-pyrimidinyl)-1,4-benzenedicarboxamide), 3; {[HgBr2(L3)]·H2O}, 4, and {[Na(L3)2][Hg2X5]·2DMF} (X = Br, 5; I, 6) are reported. All the complexes have been characterized by elemental analysis, IR spectra and single crystal X-ray diffraction. Complex 1 is dinuclear and the molecules are interlinked through S?S interactions. In 2, the Cu(II) ions are linked through the L2 ligands to form 1-D ladder-like chains with 60-membered metallocycles, whereas complexes 3 and 4 form 1-D zigzag chains. In complexes 5 and 6, the Na(I) ions are linked by the L3 ligands to form 2-D layer structures in which the [Hg2X5] anions are in the cavities. The L2 ligand acts only as a bridging ligand, while L1 and L3 show both chelating and bridging bonding modes. The L1 ligand in 1 adopts a trans-anti conformation and the L2 ligand in 2 adopts both the cis-syn and trans-anti conformations, whereas the L3 ligands in 36 adopt the trans conformation.  相似文献   

16.
The reactions of PhSe, PhS and Se2− with N-{2-(chloroethyl)}pyrrolidine result in N-{2-(phenylseleno)ethyl}pyrrolidine (L1), N-{2-(phenylthio)ethyl}pyrrolidine (L2), and bis{2-pyrrolidene-N-yl)ethyl selenide (L3), respectively, which have been explored as ligands. The complexes [PdCl2(L1/L2)] (1/7), [PtCl2(L1/L2)] (2/8), [RuCl(η6-C6H6)(L1/L2)][PF6] (3/9), [RuCl(η6-p-cymene)(L1/L2)][PF6] (4/10), [RuCl(η6-p-cymene)(NH3)2][PF6] (5) and [Ru(η6-p-cymene)(L1)(CH3CN)][PF6]2·CH3CN (6) have been synthesized. The L1-L3 and complexes were found to give characteristic NMR (Proton, Carbon-13 and Se-77). The crystal structures of complexes 1, 3-6, 9 and 10 have been solved. The Pd-Se and Ru-Se bond lengths have been found to be 2.353(2) and 2.480(11)/2.4918(9)/2.4770(5) Å, respectively. The complexes 1 and 7 have been explored for catalytic Heck and Suzuki-Miyaura coupling reactions. The value of TON has been found up to 85 000 with the advantage of catalyst’s stability under ambient conditions. The efficiency of 1 is marginally better than 7. The Ru-complexes 3 and 9 are good for catalytic oxidation of primary and secondary alcohols in CH2Cl2 in the presence of N-methylmorpholine-N-oxide (NMO). The TON value varies between 8.0 × 104 and 9.7 × 104 for this oxidation. The 3 is somewhat more efficient catalyst than 9.  相似文献   

17.
Cadmium(II) complexes of 3-hydroxypicolinic acid, namely [CdI(3-OHpic)(3-OHpicH)(H2O)]2 (1), [Cd(3-OHpic)2(H2O)2] (2) and [Cd(3-OHpic)2]n (3) were prepared and characterized by spectroscopic methods (IR, NMR) and their molecular and crystal structures were determined by X-ray crystal structure analysis. Complexes 1 and 2 were prepared in similar reaction conditions using different cadmium(II) salts: cadmium(II) iodide and cadmium(II) acetate dihydrate, respectively, while 3 was prepared by recrystallization of 2 from N,N-dimethylformamide solution. Various coordination modes of 3-OHpicH in 13 were established in the solid state: bidentate N,O-chelated mode in 1 and 2, monodentate mode through the carboxylate O atom from zwitterionic ligand in 1 and bidentate N,O-chelated and bridging mode in 3. In the DMF solution of all prepared complexes, only monodentate mode of 3-OHpicH binding to cadmium(II) through the carboxylate O atom was established by 1H, 13C, 15N and 113Cd NMR spectroscopy.  相似文献   

18.
The novel bidentate ligand, C5H4CPh2CH2-(1-Me-C3H4N2) (3), has been prepared and characterized as its lithium salt LiC5H4CPh2CH2-(1-Me-C3H4N2) (3-Li). Cyclopentadiene HC5H4CPh2CH2-(1-Me-C3H4N2) (3-H) has been obtained from 6,6-diphenylfulvene and 1,2-dimethylimidazoline (1). In THF-d8 solution in the presence of 1, (1-methylimidazoline-2-yl)methyllithium (2) has been proved to undergo gradual conversion into a dilithium derivative of N1-methyl-N2-[(1E,2E)-1-methyl-2-(1-methylimidazolidine-2-idene)ethylidene]ethane-1,2-diamine (2a). In a solution, cyclopentadiene 3-H has been shown to undergo isomerization into 3-{N-[2-(N-methylamino)ethyl]amino}-1,1-diphenyl-1,2-dihydropentalene (4) and, further, into a mixture of 4 and two rotameric 3-[N-(2-aminoethyl)-N-methylamino]-1,1-diphenyl-1,2-dihydropentalenes (5a) and (5b). Treatment of the lithium salt 3-Li with Me3SiCl has lead to 3-{N-[2-(N-trimethylsilylamino)ethyl]amino}-1,1-diphenyl-1,2-dihydropentalene (6) as the dominant component in the reaction mixture. In the latter case the expected Me3Si-C5H4CPh2CH2-(1-Me-C3H4N2) (3-Si) was not observed. Stannylation of 3-Li with 1 equiv. of Me3SnCl has resulted in formation of a mixture of Me3Sn-C5H4CPh2CH2-(1-Me-C3H4N2) (3-Sn), (Me3Sn)2-C5H3CPh2CH2-(1-Me-C3H4N2) (3-Sn2), and cyclopentadiene 3-H in a ca. 2:1:1 molar ratio. Monocyclopentadienyl complexes {[η51N-C5H4CPh2CH2-(1-Me-C3H4N2)]MCl3 (M = Ti (7), Zr (8)) have been prepared starting from the organotin and organolithium compounds 3-Sn and 3-Li, respectively. The dynamic behavior of complexes 7 and 8 has been investigated by means of variable-temperature NMR spectroscopy in solutions. The molecular structures of the dihydropentalene 4, binuclear complex {[η51N-C5H4CPh2CH2-(1-Me-C3H4N2)]ZrCl2}2(μ-Cl)28, and a coordination dimer of the dilithium salt 2a have been established by X-ray diffraction analysis. In the crystal structure of the 2a-dimer, the shortest known Li-Li contact has been found.  相似文献   

19.
The synthesis and the characterization of some new aluminum complexes with bidentate 2-pyrazol-1-yl-ethenolate ligands are described. 2-(3,5-Disubstituted pyrazol-1-yl)-1-phenylethanones, 1-PhC(O)CH2-3,5-R2C3HN2 (1a, R = Me; 1b, R = But), were prepared by solventless reaction of 3,5-dimethyl pyrazole or 3,5-di-tert-butyl pyrazole with PhC(O)CH2Br. Reaction of 1a or 1b with (R1 = Me, Et) yielded N,O-chelate alkylaluminum complexes (2a, R = R1 = Me; 2b, R = But, R1 = Me; 2c, R = Me, R1 = Et). Compound 1a was readily lithiated with LiBun in thf or toluene to give lithiated species 3. Treatment of 3 with 0.5 equiv of MeAlCl2 or AlCl3 yielded five-coordinated aluminum complexes [XAl(OC(Ph)CH{(3,5-Me2C3HN2)-1})2] (4, X = Me; 5, X = Cl). Reaction of 5 with an equiv of LiHBEt3 generated [Al(OC(Ph)CH{(3,5-Me2C3HN2)-1})3] (6). Complex 6 was also obtained by reaction of 3 with 1/3 equiv of AlCl3. Treatment of 5 with 2 equiv of AlMe3 yielded complex 2a, whereas with an equiv of AlMe3 afforded a mixture of 2a and [Me(Cl)AlOC(Ph)CH{(3,5-Me2C3HN2)-1}] (7). Compounds 1a, 1b, 2a-2c and 4-6 were characterized by elemental analyses, NMR and IR (for 1a and 1b) spectroscopy. The structures of complexes 2a and 5 were determined by single crystal X-ray diffraction techniques. Both 2a and 5 are monomeric in the solid state. The coordination geometries of the aluminum atoms are a distorted tetrahedron for 2a or a distorted trigonal bipyramid for 5.  相似文献   

20.
A study of the reactivity of enantiopure ferrocenylimine (SC)-[FcCHN-CH(Me)(Ph)] {Fc =  (η5-C5H5)Fe{(η5-C5H4)-} (1a) with palladium(II)-allyl complexes [Pd(η3-1R1,3R2-C3H3)(μ-Cl)]2 {R1 = H and R2 = H (2), Ph (3) or R1 = R2 = Ph (4)} is reported. Treatment of 1a with 2 or 3 {in a molar ratio Pd(II):1a = 1} in CH2Cl2 at 298 K produced [Pd(η3-3R2-C3H4){FcCHN-CH(Me)(Ph)}Cl] {R2 = H (5a) or Ph (6a)}. When the reaction was carried out under identical experimental conditions using complex 4 as starting material no evidence for the formation of [Pd(η3-1,3-Ph2-C3H3){FcCHN-CH(Me)(Ph)}Cl] (7a) was found. Additional studies on the reactivity of (SC)-[FcCHN-CH(R3)(CH2OH)] {R3 = Me (1b) or CHMe2 (1c)} with complex 4 showed the importance of the bulk of the substituents on the palladium(II) allyl-complex (2-4) or on the ferrocenylimines (1) in this type of reaction. The crystal structure of 5a showed that: (a) the ferrocenylimine adopts an anti-(E) conformation and behaves as an N-donor ligand, (b) the chloride is in acis-arrangement to the nitrogen and (c) the allyl group binds to the palladium(II) in a η3-fashion. Solution NMR studies of 5a and 6a and [Pd(η3-1,3-Ph2-C3H3){FcCHN-CH(Me)(CH2OH)}Cl] (7b) revealed the coexistence of several isomers in solution. The stoichiometric reaction between 6a and sodium diethyl 2-methylmalonate reveals that the formation of the achiral linear trans-(E) isomer of Ph-CHCH-CH2Nu (8) was preferred over the branched derivative (9). A comparative study of the potential utility of ligand 1a, complex 5a and the amine (SC)-H2N-CH(Me)(Ph) (11) as catalysts in the allylic alkylation of (E)-3-phenyl-2-propenyl (cinnamyl) acetate with the nucleophile diethyl 2-methylmalonate (Nu) is reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号