首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The incompletely condensed monosilylated silsesquioxanes (c-C5H9)7Si7O9(OSiRR'2)(OH)2 (SiRR'2 = SiMe3, SiMe2C(H)CH2, SiMePh2) were reacted with SiCl(4) in the presence of an amine which yielded the dichloro compounds (c-C5H9)7Si7O9(OSiRR'2)O2SiCl2 (1-3). These compounds could be hydrolyzed into the corresponding silsesquioxanes containing geminal silanols, (c-C5H9)7Si7O9(OSiRR'2)O2Si(OH)2 (4-6). At elevated temperatures, the geminal silsesquioxanes 4 and 5 undergo condensation reactions and form the closed-cage silsesquioxane monosilanol, (c-C5H9)7Si8O12(OH). The more sterically hindered geminal silsesquioxane 6 undergoes in solution intermolecular dehydroxylation, yielding the thermodynamically stable dimeric disilanol, [(c-C5H9)7Si7O9(OSiMePh2)(O2Si(OH)-)]2-(mu-O) (7). NMR and FT-IR studies show that the two silanols of the geminal silsesquioxanes 4-6 are different from each other with respect to hydrogen bonding, both in solution and in the solid state. Hydrogen bonding of the geminal silanol-containing silsesquioxanes was examined and compared to hydrogen bonding in silsesquioxanes possessing vicinal or isolated silanol groups. The relative Br?nsted acidity of the geminal silanols was determined using pK(ip) (ion-pair acidity) measurements in THF with UV-vis. These acidities were compared with those of other silsesquioxanes containing silanol groups. Acidities of 4-6 were found to be among the lowest known for silsesquioxanes.  相似文献   

2.
The distribution of SO(3)H-functional groups attached to the ordered inner pore walls of mesoporous Si-MCM-41 materials based on SiO(2) was investigated by gas adsorption combined with in situ small angle neutron scattering (SANS). The functionalization was performed by two different methods, (i) grafting and (ii) co-condensation. The adsorbates N(2) at 77 K or a H(2)O/D(2)O mixture of 42:58 at 298 K possess neutron scattering length densities (SLD) similar to that of SiO(2) and therefore quench the diffraction signals of the nonmodified silica. SANS measurements show that N(2) matches completely not only with the pristine mesoporous Si-MCM-41 but also with Si-MCM-41-SO(3)H functionalized by grafting. Thus, full access of adsorbate into the entire length of the pores is proven. For the analysis of the distribution of functional groups within the pores in dependence on the used functionalization method, grafting or co-condensation, however, the more specific adsorbate H(2)O/D(2)O (42:58) is necessary, because it reacts more sensitively toward small changes in the SLD of the host material. For grafted Si-MCM-41-SO(3)H materials, an incomplete quenching was observed, indicating that only some regions, probably the pore mouths, have been modified. For a sample functionalized by co-condensation, almost no quenching of the neutron diffraction was found, indicating a very homogeneous distribution of the functional groups along the entire pores.  相似文献   

3.
Neutron reflectivity (NR) measurements of ultrathin surface films (below 30 nm) composed of Bombyx mori silk fibroin protein in combination with atomic force microscopy and ellipsometry were used to reveal the internal structural organization in both dry and swollen states. Reconstituted aqueous silk solution deposited on a silicon substrate using the spin-assisted layer-by-layer (SA-LbL) technique resulted in a monolayer silk film composed of random nanofibrils with constant scattering length density (SLD). However, a vertically segregated ordering with two different regions has been observed in dry, thicker, seven-layer SA-LbL silk films. The vertical segregation of silk multilayer films indicates the presence of a different secondary structure of silk in direct contact with the silicon oxide surface (first 6 nm). The layered structure can be attributed to interfacial β-sheet crystallization and the formation of well-developed nanofibrillar nanoporous morphology for the initially deposited silk surface layers with the preservation of less dense, random coil secondary structure for the layers that follow. This segregated structure of solid silk films defines their complex nonuniform behavior in the D(2)O environment with thicker silk films undergoing delamination during swelling. For a silk monolayer with an initial thickness of 6 nm, we observed the increase in the effective thickness by 60% combined with surprising decrease in density. Considering the nanoporous morphology of the hydrophobic silk layer, we suggested that the apparent increase in its thickness in liquid environment is caused by the air nanobubble trapping phenomenon at the liquid-solid interface.  相似文献   

4.
Radio-frequency glow-discharge plasma polymer thin films of allylamine (AA) and hexamethyldisiloxane (HMDSO) were prepared on silicon wafers and analyzed by a combination of X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), X-ray reflectometry (XRR), and neutron reflectometry (NR). AFM and XRR measurements revealed uniform, smooth, defect-free films of 20-30 nm thickness. XPS measurements gave compositional data on all elements in the films with the exception of hydrogen. In combination with XRR and NR, the film composition and mass densities (1.46 and 1.09 g cm(-)(3) for AA and HMDSO, respectively) were estimated. Further NR measurements were conducted with the AA and HMDSO films in contact with water at neutral pH. Three different H(2)O/D(2)O mixtures were used to vary the contrast between the aqueous phase and the polymer. The amount of water penetrating the film, as well as the number of labile protons present, was determined. The AA film in contact with water was found to swell by approximately 5%, contain approximately 3% water, and have approximately 24% labile protons. The HDMSO polymer was found to have approximately 6% labile protons, no thickness increase when in contact with water, and essentially no solvent penetration into the film. The difference in the degree of proton exchange within the films was attributed to the substantially different surface and bulk chemistries of the two films.  相似文献   

5.
X-ray and neutron reflectivity were employed to elucidate the morphologies of bis[trimethoxysilylpropyl]amine silane (A) and vinyltriacetoxysilane (V) mixed films on Si wafers at different A/V ratios, and the response of these films to saturated water vapor. Due to its insensitivity to chemical composition, X-ray reflectivity was used to assess the film density, whereas neutron reflectivity was used to probe water absorption and chemical change on exposure to water. NMR was employed to determine the reaction mechanism in neat AV mixtures and stoichiometry of the initial reaction. X-ray reflectivity reveals about 30% void volume in the films with the least void volume detected near stoichiometry. Grazing incidence small-angle scattering (GISAXS) shows that the void volume is at the molecular level, with no distinct pores. Neutron reflectivity on D2O-conditioned films shows that silane film is not an effective water barrier with about 30 vol % water being absorbed with only a slight thickness increase. Most water is physically absorbed in the void space with the least amount being absorbed near the stoichiometric A/V ratio. The scattering length density of the films almost returns to the virgin state after re-dry following D2O vapor exposure. The film thickness, however, remains at the water-vapor-conditioned state. The slight increase in scattering length density and irreversible thickness change after re-dry indicate some reaction with water during D2O conditioning. A D-rich layer is also observed at the air side surface in D2O-conditioned films regardless of A/V ratio.  相似文献   

6.
We report the first dynamic in situ electrochemical neutron reflectivity (NR) measurements on electroactive films. By using a boxcar integration strategy within a cyclic voltammetric experiment, it is possible to acquire neutron reflectivity data associated with narrow, defined windows of potential. Accumulation of data from repetitive cycles allows one to build up potential- (time-) resolved profiles. The effective time resolution is now on the order of seconds, as compared to ca. 1 h using conventional methodology, making in situ NR a practical technique for dynamic electrochemical studies. Illustrative data for polyvinylferrocene films reveal hysteresis in (de)swelling, incomplete desolvation upon reduction, and transient salt retention, all of which respond to time-scale variations.  相似文献   

7.
We studied the direct micropatterning of a lanthanum-based thin film on a template of self-assembled monolayers in an aqueous solution at 80 degrees C. The template composed of silanol and octadecyl areas was prepared by UV-modified octadecyltrichlorosilane SAMs through a photomask. The amorphous La(2)O(CO(3))(2) x H(2)O thin films were selectively deposited in the silanol regions. Crystallized La(2)O(3) was obtained after heating at 800 degrees C in air.  相似文献   

8.
The microstructure of the plasma‐polymerized methylmethacrylate (ppMMA) films is characterized using neutron reflectivity (NR) as a function of the plasma reaction time or film thickness. Variation in the crosslink density normal to the substrate surface is examined by swelling the film with a solvent, d‐nitrobenzene (dNB). In the presence of dNB, uniform swelling is observed throughout the bulk as well as at the air surface, and silicon oxide interfaces. The results indicate that the MMA film prepared by plasma polymerization (ppMMA) has a uniform crosslink density from air surface to substrate surface. Additionally, the scattering length density of the plasma‐polymerized MMA film (SLD ≈ 0.750 × 10−6 Å−2) is much lower than that of a conventional PMMA film (SLD = 1.177 × 10−6 Å−2). The increase in film thickness following dNB sorption is 7.5% and at least 36% for the ppMMA and PMMA films, respectively. This suggests that the films formed by plasma polymerization are different from conventional polymers in chemical structure. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2522–2530, 2004  相似文献   

9.
Methods for replacing the carbonyl oxygen by two new substituents (C=O→CR(1)R(2)) are discussed in this Minireview, whereby R may be H, NR(2), alkyl, allyl, benzyl, vinyl, alkynyl, aryl, heteroaryl, or acyl groups. The most frequently used starting materials for geminal disubstitution with the formation of two C-C bonds (R(1),R(2)≠H, NR(2)) are amides and thioamides, which react with organometallic nucleophiles R-M (M=Li, MgX, CeX(2), TiX(3), ZrX(3)) to give tertiary sec- and tert-alkylamines. Quaternary centers can be built directly from ketones by treatment with Me(3)Al, MeTiCl(3), or Me(2)TiCl(2) (R(1)R(2)C=O→R(1)R(2)CMe(2)). The scope and limitations of the various methods and mechanistic models are briefly discussed. The remarkable variety and diversity of structures thus accessible are demonstrated by numerous examples.  相似文献   

10.
Thermodynamic, structural, and dynamic properties of heavy water (D(2)O) confined in mesoporous silica glass MCM-41 C10, C12, and C14 were investigated by differential scanning calorimetry, neutron diffraction, and neutron spin echo (NSE) measurements, respectively. The DSC data showed that no crystallization of D(2)O confined in C10 occurs in a temperature range between 298 and 180 K, and that crystalline ice is formed at 204 and 221 K for C12 and C14, respectively. For C10, the neutron radial distribution functions of confined D(2)O suggested a structural change in the supercooled state between 223 and 173 K. For C10 sample, it has been found that the tetrahedral-like water structure is partially enhanced in the central part of pores at 173 K. For all the samples, the intermediate scattering functions from the NSE measurements are fitted by the Kohlrausch-Williams-Watts stretched exponential function which implies that confined supercooled D(2)O exhibits a wide distribution of relaxation times. For C10, C12, and C14 samples, between 298 and 240 K, the relaxation times of supercooled D(2)O follow remarkably well the Vogel-Fulcher-Tamman equation; for C10 sample, below 240 K, the relaxation times of nonfreezing D(2)O show an Arrhenius type behavior. From the present experimental results on calorimetric, structural, and dynamic properties, it has been concluded that supercooled D(2)O confined in MCM-41 C10 experiences a transition from high-density to low-density hydrogen-bonded structure at around 229 K.  相似文献   

11.
The composite films, XW11O39^n-/SiO2,(X refers to Si,Ge or P,respectively) were prepared by tetraethoxysilane (TEOS) hydrolysis sol-gel method via spin-coating technique. Formation of the composite films is due to strong chemical reaction of organic silanol group with the surface oxygen atoms of XW11O39^n-, resulted in the saturation of the surface of the lacunary polyoxometalates (POMs). Therefore,the coordination structural model of the films was proposed. As for the films, retention of the primary Keggin structure was confirmed by UV-vis, FT-IR spectra and MAS NMR. The surface morphology of the films was characterized by SEM, indicating that the film surface is relatively uniform, and the layer thickness is in the range of 250-350nm. Aqueous formic acid (FA) (0-20mmol/L) was degraded into CO2 and H2O by irradiating the films in the near-UV area. The results show that all the films have photocatalytic activities and the degradation reaction follows Langmuir-Hinshelwood first order kinetics.  相似文献   

12.
Adsorption and interfacial properties of model methyl-capped nonionic surfactants C8E4OMe [C8H17O(C2H4O)4CH3] and C10E4OMe [C10H21O(C2H4O)4CH3] were studied in water and water/ethylene glycol mixtures as well as pure ethylene glycol. Critical micellar concentrations (cmc's), surface tensions, and surface excess were determined using surface tension (ST) and neutron reflection (NR) as a function of solvent type and surfactant tail length. The ST results show a strong dependence on solvent type in terms of cmc. The NR data were analyzed using a single-layer model for the adsorbed surfactant films. Surprisingly, the adsorption parameters obtained in both water and pure ethylene glycol were very similar, and variations in film thickness or area per molecule are negligible in respect of the uncertainties. Similarly, for C10E4OMe, estimates for the free energies of adsorption and micellization show only a weak solvent dependence. These results suggest that for such model nonionic surfactants dilute solution properties are dictated by solvophobicity, which is quite similar for this class of water, glycol, and water-glycol mixtures. More specifically, the nature of the adsorption layer appears to be hardly affected by the type of solvent subphase. The findings highlight the significance of solvophobicity and show that model nonionic surfactants can behave very similarly in hydrogen-bonding glycol solvents and water.  相似文献   

13.
The adsorption of myoglobin to Langmuir monolayers of a metal-chelating lipid in crystalline phase was studied using neutron and X-ray reflectivity (NR and XR) and grazing incidence X-ray diffraction (GIXD). In this system, adsorption is due to the interaction between chelated divalent copper or nickel ions and the histidine moieties at the outer surface of the protein. The binding interaction of histidine with the Ni-IDA complex is known to be much weaker than that with Cu-IDA. Adsorption was examined under conditions of constant surface area with an initial pressure of 40 mN/m. After approximately 12 h little further change in reflectivity was detected, although the surface pressure continued to slowly increase. For chelated Cu2+ ions, the adsorbed layer structure in the final state was examined for bulk myoglobin concentrations of 0.10 and 10 microM. For the case of 10 microM, the final layer thickness was approximately 43 A. This corresponds well to the two thicker dimensions of myoglobin in the native state (44 A x 44 A x 25 A) and so is consistent with an end-on orientation for this disk-shaped protein at high packing density. However, the final average volume fraction of amino acid segments in the layer was 0.55, which is substantially greater than the value of 0.44 calculated for a completed monolayer from the crystal structure. This suggests an alternative interpretation based on denaturation. GIXD was used to follow the effect of protein binding on the crystalline packing of the lipids and to check for crystallinity within the layer of adsorbed myoglobin. Despite the strong adsorption of myoglobin, very little change was observed in the structure of the DSIDA film. There was no direct evidence in the XR or GIXD for peptide insertion into the lipid tail region. Also, no evidence for in-plane crystallinity within the adsorbed layer of myoglobin was observed. For 0.1 microM bulk myoglobin concentration, the average segment volume fraction was only 0.13 and the layer thickness was < or = 25 A. Adsorption of myoglobin to DSIDA-loaded with Ni2+ was examined at bulk concentrations of 10 and 50 microM. At 10 microM myoglobin, the adsorbed amount was comparable to that obtained for adsorption to Cu2+-loaded DSIDA monolayers at 0.1 M. But interestingly, the adsorbed layer thickness was 38 A, substantially greater than that obtained at low coverage with Cu-IDA. This indicates that either there are different preferred orientations for isolated myoglobin molecules adsorbed to Cu-IDA and Ni-IDA monolayer films or else myoglobin denatures to a different extent in the two cases. Either interpretation can be explained by the very different binding energies for individual interactions in the two cases. At 50 microM myoglobin, the thickness and segement volume fraction in the adsorbed layer for Ni-IDA were comparable to the values obtained with Cu-IDA at 10 microM myoglobin.  相似文献   

14.
Well-ordered cubic mesoporous silicas SBA-1 functionalized with sulfonic acid groups have been synthesized through in situ oxidation of mercaptopropyl groups with H(2)O(2) via co-condensation of tetraethoxysilane (TEOS) and 3-mercaptopropyltrimethoxysilane (MPTMS) templated by cetyltriethylammonium bromide (CTEABr) under strong acidic conditions. Various synthesis parameters such as the amounts of H(2)O(2) and MPTMS on the structural ordering of the resultant materials were systematically investigated. The materials thus obtained were characterized by a variety of techniques including powder X-ray diffraction (XRD), multinuclear solid-state Nuclear Magnetic Resonance (NMR) spectroscopy, (29)Si{(1)H} 2D HETCOR (heteronuclear correlation) NMR spectroscopy, thermogravimetric analysis (TGA), and nitrogen sorption measurements. By using (13)C CPMAS NMR technique, the status of the incorporated thiol groups and their transformation to sulfonic acid groups can be monitored and, as an extension, to define the optimum conditions to be used for the oxidation reaction to be quantitative. In particular, (29)Si{(1)H} 2D HETCOR NMR revealed that the protons in sulfonic acid groups are in close proximity to the silanol Q(3) species, but not close enough to form a hydrogen bond.  相似文献   

15.
The amphiphilic copolymers of the Pluronic family are known to be excellent dispersants for single-walled carbon nanotubes (SWCNT) in water, especially F108 and F127, which have rather long end-blocks of poly(ethylene oxide) (PEO). In this study, the structure of the CNT/polymer hybrid formed in water is evaluated by measurements of small-angle neutron scattering (SANS) with contrast variation, as supported by cryo-transmission electron microscopy (cryo-TEM) imaging. The homogeneous, stable, inklike dispersions exhibited very small isolated bundles of carbon nanotubes in cryo-TEM images. SANS experiments were conducted at different D(2)O/H(2)O content of the dispersing solvent. The data for both systems showed surprisingly minimal intensity values at 70% D(2)O solvent composition, which is much higher than the expected value of 17% D(2)O that is based on the scattering length density (SLD) of PEO. At this near match point, the data exhibited a q(-1) power law relation of intensity to the scattering vector (q), indicating rodlike entities. Two models are evaluated, as extensions to Pederson's block copolymer micelles models. One is loosely adsorbed polymer chains on a rodlike CNT bundle. In the other, the hydrophobic block is considered to form a continuous hydrated shell on the CNT surface, whereas the hydrophilic blocks emanate into the solvent. Both models were found to fit the experimental data reasonably well. The model fit required special considerations of the tight association of water molecules around PEO chains and slight isotopic selectivity.  相似文献   

16.
D(2)O-grown crystals of yeast zinc porphyrin substituted cytochrome c peroxidase (ZnCcP) in complex with yeast iso-1-cytochrome c (yCc) diffract to higher resolution (1.7 A) and pack differently than H(2)O-grown crystals (2.4-3.0 A). Two ZnCcP's bind the same yCc (porphyrin-to-porphyrin separations of 19 and 29 A), with one ZnCcP interacting through the same interface found in the H(2)O crystals. The triplet excited-state of at least one of the two unique ZnCcP's is quenched by electron transfer (ET) to Fe(III)yCc (k(e) = 220 s(-1)). Measurement of thermal recombination ET between Fe(II)yCc and ZnCcP+ in the D(2)O-treated crystals has both slow and fast components that differ by 2 orders of magnitude (k(eb)(1) = 2200 s(-1), k(eb)(2) = 30 s(-1)). Back ET in H(2)O-grown crystals is too fast for observation, but soaking H(2)O-grown crystals in D(2)O for hours generates slower back ET, with kinetics similar to those of the D(2)O-grown crystals (k(eb)(1) = 7000 s(-1), k(eb)(2) = 100 s(-1)). Protein-film voltammetry of yCc adsorbed to mixed alkanethiol monolayers on gold electrodes shows slower ET for D(2)O-grown yCc films than for H(2)O-grown films (k(H) = 800 s(-1); k(D) = 540 s(-1) at 20 degrees C). Soaking H(2)O- or D(2)O-grown films in the counter solvent produces an immediate inverse isotope effect that diminishes over hours until the ET rate reaches that found in the counter solvent. Thus, D(2)O substitution perturbs interactions and ET between yCc and either CcP or electrode films. The effects derive from slow exchanging protons or solvent molecules that in the crystal produce only small structural changes.  相似文献   

17.
We report the syntheses, crystal structures, and magnetic properties of KMn(2)(H(3)O(2))(MoO(4))(2) (MnH), KMn(2)(D(3)O(2))(MoO(4))(2) (MnD), KFe(2)(H(3)O(2))(MoO(4))(2) (FeH), KFe(2)(D(3)O(2))(MoO(4))(2) (FeD), KCo(2)(H(3)O(2))(MoO(4))(2) (CoH), and KCo(2)(D(3)O(2))(MoO(4))(2) (CoD), and the magnetic structures of MnD and FeD. They belong to the structural variant (space group I2/m) of the mineral natrochalcite NaCu(2)(H(3)O(2))(SO(4))(2) (space group C2/m) where the diagonal within the ac-plane of the latter become one axis of the former. The structure of MnD, obtained from Rietveld refinement of a high-resolution neutron pattern taken at 300 K, consists of chains of edge-sharing octahedra bridged by MoO(4) and D(3)O(2) to form layers, which are connected to K through the oxygen atoms to form the three-dimensional (3D)-network. The X-ray powder diffraction patterns of the other two compounds were found to belong to the same space group with similar parameters. The magnetic susceptibilities of MnH and FeH exhibit long-range ordering of the moments at a Ne?el temperature of 8 and 11 K, respectively, which are accompanied by additional strong Bragg reflections in the neutron diffraction in the ordered state, consistent with antiferromagnetism. Analyses of the neutron data for MnD and FeD reveal the presence of both long- and short-range orderings and commensurate magnetic structures with a propagation vector of (?, 0, ?). The moments are antiferromagnetically ordered within the chains with alternation between chains to generate four nonequivalent nuclear unit cells. For MnD the moments are perpendicular to the chain axis (b-axis) while for FeD they are parallel to the b-axis. The overall total is a fully compensated magnetic structure with zero moment in each case. Surprisingly, for KCo(2)(D(3)O(2))(MoO(4))(2) neither additional peaks nor increase of the nuclear peaks' intensities were observed in the neutron diffraction patterns below the magnetic anomaly at 12 K which was identified to originate from a small quantity of a ferromagnetic compound, Co(2)(OH)(2)MoO(4).  相似文献   

18.
We have determined the structural conformations of human lactoferrin adsorbed at the air/water interface by neutron reflectivity (NR) and its solution structure by small angle neutron scattering (SANS). The neutron reflectivity measurements revealed a strong structural unfolding of the molecule when adsorbed at the interface from a pH 7 phosphate buffer solution (PBS with a total ionic strength at 4.5 mM) over a wide concentration range. Two distinct regions, a top dense layer of 15-20 angstroms on the air side and a bottom diffuse layer of some 50 angstroms into the aqueous subphase, characterized the unfolded interfacial layer. At a concentration around 1 g dm(-3), close to the physiological concentration of lactoferrin in biological fluids, the adsorbed amount was 5.5 x 10(-8) mol m(-2) in the absence of NaCl, but the addition of 0.3 M NaCl reduced protein adsorption to 3.5 x 10(-8) mol m(-2). Although the polypeptide distributions at the interface remained similar, quantitative analysis showed that the addition of NaCl reduced the layer thickness. Parallel measurements of lactoferrin adsorption in D2O instead of null reflecting water confirmed the unfolded structure at the interface. Furthermore, the D2O data indicated that the polypeptide in the top layer was predominantly protruded out of water, consistent with it being hydrophobic. In contrast, the scattering intensity profiles from SANS were well described by a cylindrical model with a diameter of 47 angstroms and a length of 105 angstroms in the presence of 0.3 M NaCl, indicating a retention of the globular framework in the bulk solution. In the absence of NaCl but with the same amount of phosphate buffer, the length of the cylinder increased to some 190 angstroms and the diameter remained constant. The length increase is indicative of changes in distance and orientation between the bilobal monomers due to the change in charge interactions. The results thus demonstrate that the surface structural unfolding was caused by the exposure of the protein molecule to the unsymmetrical energetic balance following surface adsorption.  相似文献   

19.
We have examined the elementary molecular processes responsible for proton transfer and HD exchange in thin ice films for the temperature range of 100-140 K. The ice films are made to have a structure of a bottom D(2)O layer and an upper H(2)O layer, with excess protons generated from HCl ionization trapped at the D(2)OH(2)O interface. The transport behavior of excess protons from the interfacial layer to the ice film surface and the progress of the HD exchange reaction in water molecules are examined with the techniques of low energy sputtering and Cs(+) reactive ion scattering. Three major processes are identified: the proton hopping relay, the hop-and-turn process, and molecular diffusion. The proton hopping relay can occur even at low temperatures (<120 K), and it transports a specific portion of embedded protons to the surface. The hop-and-turn mechanism, which involves the coupling of proton hopping and molecule reorientation, increases the proton transfer rate and causes the HD exchange of water molecules. The hop-and-turn mechanism is activated at temperatures above 125 K in the surface region. Diffusional mixing of H(2)O and D(2)O molecules additionally contributes to the HD exchange reaction at temperatures above 130 K. The hop-and-turn and molecular diffusion processes are activated at higher temperatures in the deeper region of ice films. The relative speeds of these processes are in the following order: hopping relay>hop and turn>molecule diffusion.  相似文献   

20.
A first study of possible changes instigated by deuteration in amino acids was carried out using neutron diffraction, inelastic neutron scattering, and Raman scattering in l-alanine, C2H4(NH2)COOH. Careful analysis of the structural parameters shows that deuteration of l-alanine engenders significant geometric changes as a function of temperature, which can be directly related to the observation of new lattice vibration modes in the Raman spectra. The combination of the experimental data suggests that C2D4(ND2)COOD undergoes a structural phase transition (or a structural rearrangement) at about 170 K. Considering that this particular amino acid is a hydrogen-bonded system with short hydrogen bonds (O...H approximately 1.8 A), we evoke the Ubbelohde effect to conclude that substitution of hydrogen for deuterium gives rise to changes in the hydrogen-bonding interactions. The structural differences suggest distinct relative stabilities for the hydrogenous and deuterated l-alanine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号