首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Abstract— Growing wheat seedlings in the presence of BASF 13.338 [4-chloro-5-dimethylamino-2-phenyl-3(2H)pyridazinone], a PS II inhibitor of the pyridazinone group, brought about notable changes in the structure and functioning of photosynthetic apparatus. In BASF 13.338 treated plants, there was a decrease in the ratio of Chi a/Chl b, an increase in xanthophyll/carotene ratio and an increase in the content of Cyt b 559 (HP + LP). Chl/p700 ratio increased when measured with the isolated chloroplasts but not with the isolated PS I particles of the treated plants. The SDS-PAGE pattern of chloroplast preparations showed an increase in the CPII/CP I ratio. The F685/F740 ratio in the emission spectrum of chloroplasts at -196°C increased. The difference absorption spectrum of chloroplasts between the control and the treated plants showed a relative increase of a chlorophyll component with a peak absorption at 676 nm and a relative decrease of a chlorophyll component with a peak absorption at 692 nm for the treated plants. The excitation spectra of these chloroplast preparations were similar. Chloroplasts from the treated plants exhibited a greater degree of grana stacking as measured by the chlorophyll content in the 10 K pellet. The rate of electron transfer through photosystem II at saturating light intensity in chloroplast thylakoids isolated from the treated plants increased (by 50%) optimally at treatment of 125 μM BASF 13.338 as compared to the control. This increase was accompanied by an increase in (a) I50 value of DCMU inhibition of photosystem II electron transfer; (b) the relative quantum yield of photosystem II electron transfer; (c) the magnitude of C550 absorbance change; and (d) the rate of carotenoid photobleaching. These observations were interpreted in terms of preferential synthesis of photosystem II in the treated plants. The rate of electron transfer through photosystems I and through the whole chain (H2O → methyl viologen) also increased, due to an additional effect of BASF 13.338, namely, an increase in the rate of electron transfer through the rate limiting step (between plastoquinol and cytochrome f). This was linked to an enhanced level of functional cytochrome f. The increase in the overall rate of electron transfer occurred in spite of a decrease in the content of photosystem I relative to photosystem II. Treatment with higher concentrations (> 125 μM) of BASF 13.338 caused a further increase in the level of cytochrome f, but the rate of electron transfer was no greater than in the control. This was due to an inhibition of electron transfer at several sites in the chain.  相似文献   

2.
Abstract— Recent work in our laboratory yielded new evidence that noncyclic electron transport in chloroplasts from water to ferredoxin (Fd) and N ADP is carried out solely by System II which, unexpectedly, was found to include not one but two photoreactions (IIa and IIb). The evidence suggests that these operate in series, being joined together by a ‘dark’ chain of electron carriers that includes (but is not limited to) cytochrome b559 and plastocyanin (PC): H2O → IIbhv→ C550 → Cyt b559 rarr;PC→IIahv→ Fd → NADP. Photoreaction IIb involves an electron transfer from water to C550, a new chloroplast component distinct from cytochromes, whose photoreduction is observed as a decrease in absorb-ance with a maximum at 550 nm. The photoreduction of CSSO proceeds effectively only in short-wavelength System II light, is insensitive to low temperature (at least down to — 189°C). does not require plastocyanin, and is the first known System II photoreaction which is resistant to inhibition by DCMU or o-phenanthroline. Photoreaction IIa involves an electron transfer from cytochrome b559 to ferredoxin-NADP and also proceeds effectively only in System II light. The photooxidation of cytochrome b559 requires plastocyanin. Cytochrome b559 is reduced by C550 in a reaction that is readily inhibited by DCMU or o-phenanthroline. Thus, the site of DCMU (and o-phenanthroline) inhibition of System II appears to lie between C550 and cytochrome b559. System I, comprising a single long-wavelength light reaction and a cyclic electron transport chain that includes cytochromes b6 and f, is viewed as operating in parallel to System II. The photoreduction of NADP by artificial electron donors via System I involves a portion of the cyclic electron transport chain and appears to be independent of plastocyanin. Chloroplast fragments have been prepared which either (a) exhibit System II activity (water → NADP) and lack functional cytochrome f and P700 or (b) exhibit System I activity and lack plastocyanin. The present concept is consistent with the following: (i) No enhancement effect was found for NADP reduction by water where only System II is thought to be involved, but a large enhancement effect was observed in chloroplasts engaged in complete photosynthesis where both cyclic (System I) and noncyclic photophosphorylation (System II) are needed for CO2 assimilation. (ii) The transfer of one electron from water to ferredoxin via System II requires optimally two quanta, but the transfer of one electron from reduced dye to ferredoxin via System I requires optimally only one quantum of light.  相似文献   

3.
Abstract— The action of Triton X-100 upon photosynthetic membranes which are devoid of carotenoids produces a small Photosystem I particle (HP700 particle) which is active in N ADP photoreduction and has a [Chl]/[P700] ratio of 30. The properties of the HP700 particle indicate that it is a reaction center complex which is served by an accessory complex containing the additional light-harvesting chlorophyll of Photosystem I as well as the cytochromes and plastoquinone. When Photosystem II particles obtained by the action of Triton X-100 are further washed with a solution 0.5 M in sucrose and 0.05 M in Tris buffer (pH 8.0), chlorophyll-containing material is released. After centrifugation, the supernatant contains about 1 per cent of the chlorophyll and contains three types of particles which can be separated by sucrose density gradient centrifugation. One of these particles, designated TSF-2b, has the same pigment composition as the original Photosystem II fragment, contains cytochrome 559, and shows Photosystem II activity (DCMU-sensitive diphenylcarbazide-supported photoreduction of 2,6-dichlorophenolindophenol). The other two particles (TSF-2a and TSF-2a′) have a [Chl a]/[Chl b] ratio of 8, have a low concentration of xanthophylls, and show a [Chl]/[Cyt 5591 ratio of about 20. Only the TSF-2a particle is active in the Photosystem II reaction described above. On the basis of these data, it is proposed that the Photosystem II unit consists of a reaction center complex which contains Chl a, Cyt 559, and an acceptor for the photochemical reaction. The reaction center complex would be served by an accessory complex which contains the light-harvesting pigments, Chl a. Chi b, and xanthophyils.  相似文献   

4.
Light-induced changes in cytochrome b-559 in spinach chloroplasts   总被引:4,自引:0,他引:4  
Abstract— In isolated spinach chloroplasts, the reduction of cytochrome b-559 by System II and its oxidation by System I can be observed when electron acceptor concentration limits System I activity and when one of a particular class of uncoupling agents is present. This class includes CCCP, desaspidin, Triton X-100 and antimycinA; but not simple amines or atebrin. The effect of the uncoupler is to speed the cytochrome b-559 oxidation rate. In addition, the rate of the off-response of the light-induced P518 absorbance change is increased. To explain these findings, an electron transfer scheme is proposed having two distinct pathways between System II and System I.  相似文献   

5.
Abstract— Dunaliella chloroplasts were fractionated according to C. Arntzen et al, Biochim. Biophys. Acta 256 , 85–107, 1972. The initial French-press treatment and differential centrifugation produced Fraction 1 (Fr 1) enriched in photosystem I activity and a heavier Fraction 2 (Fr 2). When Fr 2 was treated with digitonin followed by either gradient or differential centrifugation, two more fractions were recovered: Fr 1 g with a photosystem 1 activity similar to that of Fr 1, and Fr 2 g with very low photosystem II activity. Photosystem II activity was considerably lower in these Dunaliella chloroplasts and fractions than in spinach particles measured under the same conditions, but the relative activities between the fractions were similar to those for spinach. Fr 2 always had greater photosystem II activity than Fr 1, but the digitonin fractions were low and similar in photosystem II activity. Photosystem II activity was measured as the reduction of 2, 6–dichlorophenol indophenol (DCIP) with H2O, diphenylcarbazide (DPC) or Mn2+ as electron donor. The results indicated that exogenous manganous ion competed with H2O as an electron donor to photosystem II in broken chloroplasts initially, but after 10–15 s of illumination, the Mn3+ formed began to reoxidize DCIP and a cyclic reaction ensued. DPC and Mn2+ appeared to react at different sites. Computer-assisted curve analysis of the absorption spectrum of each fraction revealed four major component curves representing the absorbing forms of chlorophyll a at 663, 670, 679 and 684 nm seen in numerous other in vivo chlorophyll spectra (C. S. French et al., Plant Physiol. 49 , 421–429, 1972). However, Fr 2g had approx. 20 percent more of Ca663 and Ca670 and 10% more absorption by chl b than Fr 1 which correlated with the difference in photosystem II activity. On the long wavelength side, Fr 2 g had no Ca694 and almost no photosystem I activity. The results are not sufficient to answer the question of whether the photosystem I particle obtained from the original homogenate is significantly similar to or different from the corresponding fraction obtained from Fr 2 with digitonin.  相似文献   

6.
Abstract— Cytochrome b558 in solubilized membranes prepared from porcine neutrophils was reduced by dithionite with a second-order rate constant of 2.5 times 106 M-1 s-1 at pH 7.4 and 20°C accompanied by spectral changes with peaks at 428 nm and 560 nm and isosbestic points at 420 and 441 nm. When an anaerobic mixture of solubilized membranes and NAD(P)H was exposed to a white light, cytochrome b558 was reduced biphasically but with almost the same spectral profiles as in the dithionite reduction. Thus, participation of redox component(s) of unknown nature in the photochemical reduction was suggested. The NAD(P)- radical generated by photoexcitation of NAD(P)H with a 355 nm laser pulse under anaerobic conditions also reduced cytochrome b558 with a high rate constant of 4.3 times 108M-1 s-1 at pH 7.4 and 20°C. The reduction of cytochrome b558 accompanied a simultaneous reduction of a component having an absorption band around 420 nm, suggesting participation of an iron-sulfur (Fe-S) cluster. The cytochrome b558 reduction was followed by its reoxidation by another component with an apparent second-order rate constant of 6.5 times 105M-1 s-1. During the reoxidation, the Fe-S-like component remained in the reduced state, and thus its role other than as electron mediator in neutrophils NADPH oxidase is suggested. Not only the rate constant but also the extent of cytochrome b558 reoxidation decreased as the same reaction mixture was exposed to the laser pulse repeatedly. This result clearly indicates that an electron accumulates in this electron-accepting component designated tentatively as the ω component.  相似文献   

7.
Abstract— The mycelium of Neurospora crassa was ground and extracted with buffer and separated into a soluble supernatant fraction and a particulate fraction by centrifugation. Both fractions were examined for light-induced absorbance changes. Irradiation of the supernatant fraction caused a reversible photooxidation of cytochrome c which was inhibited by sodium azide or by dialysis. The action spectrum for the photooxidation showed that the response was mediated by an endogenous flavin. The photooxidation of cytochrome c, lost by dialysis, could be restored by adding flavin mononucleotide. Irradiation of the particulate fraction with blue light caused a reversible photoreduction of cytochrome c and cytochrome oxidase and, in some samples, of cytochrome b as well. The supernatant fraction showed photooxidation of cytochrome c rather than the more usual photoreductive changes because of the presence of super-oxide dismutase activity.  相似文献   

8.
Abstract —The transient oxidation and subsequent reduction of P700+ in spinach chloroplasts has been monitored by flash photolysis-electron spin resonance spectroscopy in the presence of various donors and acceptors. In general, the results obtained correlate well with results on Photosystem I subchloroplast particles, with two major differences. For Type A and B intact chloroplasts in the presence of 3-(3, 4-dichlorophenyl)-1, 1-dimethylurea (DCMU), the electron acceptor methyl viologen has no effect on the decay kinetics. This phenomenon is interpreted in terms of a functioning cyclic electron flow path around Photosystem I. Also, the photoresponse of Signal I depends on the length of the photolyzing flash. This is interpreted in terms of the existence of a primary electron donor to P700+ with a transfer time of ? 10 μs.  相似文献   

9.
Abstract— Allophycocyanin from dissociated phycobilisomes of Nostoc sp. occurs in three spectrally identifiable forms that fractionate on calcium phosphate adsorption chromatography as: allophycocyanin (APC) I (15–20%), APC II (4&50%), and APC III (30–40%). APC I has a single absorption maximum at 654 nm, and a fluorescence emission peak at 678 nm. The absorption peaks of APC II and III are both at 650 nm, but the relative absorbance at 620/650 nm of APC III is less than that of APC II. The emission of both is maximum at 660 nm. On zone sedimentation in sucrose, their S20,w values of 6.0 ± 0.1 (APC I), 5.0 ± 0.1 (APC II), and 5.3 ± 0.2 (APC III) were comparable to the order of their elution from Sephadex G-200. On SDS acrylamide gel electrophoresis two subunits were resolved with apparent molecular weights of 16,900 and 18,400 daltons. When stained by Coomassie blue, they were present in a ratio of 1α:1β in APC II and III, and a probable ratio of 2a:3β in APC I. The larger size of APC I may be accounted for by additional β subunits, by the presence of an additional polypeptide of 35,000 daltons, or both. Over several days, bleaching as noted by a decrease in absorbance at 650 nm, occurred in all three forms; in addition, the more pronounced bleaching at 650 nm, relative to 620 nm, results in APC III becoming spectrally identical to APC II. A trace of a fourth pigment, probably comparable to allophycocyanin-B, was occasionally detected. The results suggest that several in vitro APC forms (sharing similar subunits) arise upon phycobilisome dissociation, and that APC I is the form most closely related to the final fluorescence emitter of intact phycobilisomes. In this form it probably serves as the bridging pigment in energy transfer from the phycobilisomes to chlorophyll.  相似文献   

10.
Different pigment extraction procedures and HPLC methods were tested to investigate the geometric configuration of the β-carotene in two forms of the photosystem II reaction center (Dl-D2-cytochrome (Cyt) b559) complex containing one and two β-carotene molecules per two pheophytin a. All the handling steps and HPLC analyses were done in darkness at room temperature and at 4°C. Two different pigment extracts were analyzed, a mixture of chlorophyll a, pheophytin a and 3-carotene, and the isolated p-carotene from that mixture. In both cases only the all-frans-β-carotene was detected. The chromatographic profiles were similar at both temperatures only differing in the retention times that were longer at 4°C. This result was independent of the concentration of photosynthetic starting material. Furthermore, no differences were observed between Dl-D2-Cyt b559 complexes with one and two p-carotene molecules per reaction center. The analysis of the β-carotene chromatographic peak indicated no 15-cis to all-fraws isom-erization occurred during the HPLC chromatography in our experimental conditions. Resonance Raman spectra were also recorded in the isolated Dl-D2-Cyt b559 complex at room and liquid nitrogen temperature with excitation at 514.5 nm from an Ar+ laser. Spectra of control preparations showed main bands at 1532, 1264, 1213, 1185, 1154 and 1003 cm?1 corresponding to the M-trans isomer and confirm previous results. The presence in the reaction center suspension of artificial electron acceptors such as silicomolybdate or 2,5-dibromo-3-methyl-6-iso-propyl-p-benzoquinone that are able to quench 3P680 did not modify the resonance Raman spectra of the native Dl-D2-Cyt b559 complex. The results suggest that no isomerization takes place during the laser irradiation.  相似文献   

11.
b-Type cytochromes of the higher plant plasma membrane may be reduced by irradiation with actinic blue light (light-induced absorbance change). Although this reaction has been reported to depend on the presence of an exogenous oxygen-scavenging system, significant cytochrome reduction was obtained in bean hook (Phaseolus vulgaris L. cv. “Limburgse Vroege”) plasma membranes without any addition. An endogenous oxygen-consuming reaction is apparently sufficient to achieve a proper redox balance. A blue light-mediated absorbance change with absorbance minima at 450 and 475 nm precedes cytochrome b reduction and indicates the presence of a flavoprotein in the plasma membrane fraction. Cytochrome b reduction by blue light in the absence of an oxygen scavenger is highly sensitive to flavin photosensitizers. Glucose oxidase, which has previously been used to lower the oxygen concentration in membrane samples, was demonstrated to have a photosensitizing effect. Inhibitors of flavin photochemical reactions (KI and phenylacetic acid) were highly effective in preventing cytochrome b reduction. These results indicate that the blue light-mediated reaction probably involves an endogenous plasma membrane flavoprotein as the photoreceptor. As plasma membrane NADH-dependent oxidoreductases potentially are flavoproteins these experiments raise the question whether a plasma membrane cytochrome b and a flavin-enzyme may cooperate in blue light reactions. Evidence is also discussed, suggesting the possible involvement of oxygen radicals in the blue light-induced cytochrome b reduction.  相似文献   

12.
王志强  邬建  王韵华  钱雯  谢毅  夏宗芗  黄仲贤 《中国化学》2002,20(11):1212-1224
IntroductionCytochromeb5(Cytb5)isamembrane boundpro tein .Itcanbeproteolyzedtoyieldasoluble ,hydrophilicdomaincontaininganon covalentlyboundhemegroup .Cytb5isinvolvedinelectrontransferwithavarietyofproteins,suchascytochromec (Cytc) ,1 3 metmyo globin ,2 methemoglo…  相似文献   

13.
Abstract— –Fraction-1 particles were prepared by passing spinach chloroplasts three times through the French pressure cell and centrifuging in a sucrose gradient. With the electron donor DAD (diaminodurol or 2,3,5,6-tetramethyl-p-phenylenediamine) and ascorbate, a light-induced difference spectrum revealed the oxidation of both cytochrome f and P700 upon illumination of these particles. The oxidation of cytochrome f was completed in less than 0.5 msec. P700 and cytochrome f thus seem to be tightly bound to each other in these particles. Addition of Triton X-100 abolished the fast oxidation of cytochrome f but not that of P700. Artificial electron donors such as DAD, DCIP (2,6-dichlorophenol indophenol), and PMS (N-methylphenazonium methosulfate) were good electron donors for photoreaction 1 in these particles, while neither plastocyanin, Porphyra cytochrome 553, nor Euglena cytochrome-552 reduced P700 efficiently. However, after treatment of fraction 1 particles with Triton X-100 reduced DAD, DCIP and PMS were no longer efficient electron donors, while plastocyanin and the algal cytochromes were highly active in reducing P700. Mammalian cytochrome c was not a good electron donor either before or after Triton treatment. Measurements of the effectiveness of P700 reduction as a function of concentration in Triton-treated particles showed plastocyanin to be about four times more active than Porphyra or Euglena cytochromes which in turn were about fourteen times more active than mammalian cytochrome c. Recent studies by Murata and Brown have shown that plastocyanin is not required for the reduction of NADP in these particles with DCIP and isoascorbate as electron donors. The present investigation and that of Murata and Brown indicate that disintegration of chloroplasts with the French pressure cell and centrifugation in a sucrose gradient is the best method to separate system-1 particles having an electron-transport system in almost the native state as in chloroplasts.  相似文献   

14.
Abstract—absorption spcctra of reaction center Complexes I and II from Chlorobium limicola f. thiosul-fatophilum were taken from 760 and 860 nm at 5 K. Fourth and eighth derivatives of the spectra were calculated from the digital data. Light-minus-dark difference spectra were taken, also at 5 K, with 590 nm actinic light. A shoulder not visible at 77 K appears on the long wavelength side of the 834 nm peak in Complex I. In Complex II, which is derived by guanidine HCI treatment of I, the shoulder is much more pronounced; derivative peaks appear at 834 and 838 nm. In the difference spectra, there are troughs at 832 and 838 nm. The latter trough is the first instance in green bacteria of a wavelength coincidence between a light-induced bleaching and a peak in (derivative) absorbance. There is also a nearly symmetrical pair of features, a trough at 814 nm and a peak at 818 nm, that appear to represent a light-induced bathochromic shift of the absorbance at 816 nm, a peak which occurs in both complexes as well as the photochemically inert bacteriochlorophyll a (Bchl a) protein. Other features in the absorption spcctra of both Complexes occur at virtually the same wavelengths as the peaks in purified Bchl a-protein trimer. We conclude that a large fraction of the Bchl a in Complex II is in a conformation similar to that of a single subunit of Bchl a-protein.  相似文献   

15.
Abstract— The excitation spectrum for bacteriochlorophyll b fluorescence, the action spectrum for cytochrome-553 oxidation, and the action spectrum for P-985 bleaching are compared to the absorption (1-T) spectrum of a Rhodopseudomonas sp. NHTC 133 extract over the range 770 to 930 mμ. These spectra show that a minor pigment P-830 is more effective in sensitizing cytochrome oxidation and P-985 bleaching than in exciting fluorescence of Bchl b. These results are consistent with the proposal that P-830 is a form of Bchl b in special relation to the reaction center pigment P-985.  相似文献   

16.
Abstract— The distribution of absorbed light and the turnover of electrons by the two photosystems in spinach chloroplasts was investigated. This was implemented upon quantitation of photochemical reaction centers, chlorophyll antenna size and composition of each photosystem (PS), and rate of light absorption in situ. In spinach chloroplasts, the photosystem stoichiometry was PSIIJPSIIα/PSIIβ/PSI= 1.3/0.4/1.0. The number (N) of chlorophyll (a+b) molecules associated with each PS was N(PSIIα)/N(PSIIβ)/N(PSI)=230/100/200, i.e. about 65% of all Chl is associated with PSII and about 35% with PSI. Light absorption by PSII in vivo is selectively attenuated at the molecular, membrane and leaf levels, (a) The rate of light absorption by PSII was only 0.85 that of PSI because of the lower rate of light absorption by Chl b as compared to Chl a (approximately 80% of all Chl b in the chloroplast is associated with PSII). (b) The exclusive localization of PSIIα in the membrane of the grana partition regions and of PSI in intergrana lamellae resulted in a differential “sieve effect” or “flattening of absorbance” by the photosystems in the two membrane regions. Due to this phenomenon, the rate of light absorption by PSII was lower than that of PSI by 15-20%. (c) Selective filtering of sunlight through the spinach leaf results in a substantial distortion of the effective absorbance spectra and concomitant attenuation of light absorption by the two photosystems. Such attenuation was greater for PSII than for PSI because the latter benefits from light absorption in the 700-730 nm region. It is concluded that, in spite of its stoichiometric excess in spinach chloroplasts, light absorption by PSII is not greater than that by PSI due to the different molecular composition of the two light-harvesting antenna systems, due to the localization of PSII in the grana, and also because of the light transmission properties through the leaf. The elevated PSII/PSI reaction center ratio of 1.7 and the association of 65% of all Chl with PSII help to counter the multilevel attenuation of light absorption by PSII and ensure a balanced PSII/PSI electron turnover ratio of about 1:1.  相似文献   

17.
Abstract— Incubating spinach chloroplasts with various chaotropic agents results in inhibition of photosynthetic electron transport between water and Photosystem II similar to the inhibition caused by washing chloroplasts with a high concentration of Tris buffer. Partial restoration of NADP photoreduction and fluorescence of variable yield is achieved by adding hydroquinone or Mn2+, either of which donates electrons to Photosystem II in the inhibited chloroplasts. The inhibitory treatments cause the release of Mn from its bound state in the chloroplast, thus allowing the measurement of the ESR signal of Mn2+. The ESR measurement is used to follow the photooxidation of Mn2+ as it donates electrons to photosystem II.  相似文献   

18.
Abstract— Light-dark optical difference spectra of degassed ethanol or pyridine solutions of chlorophyll and benzoquinone or hydroquinone at temperatures above — 50°C show only the semiquinone absorbance band. Decay of the signals is second order, with a rate constant in agreement with earlier ESR results. Light-induced optical changes due to chlorophyll can be elicited by lowering the temperature of ethanol solutions of chlorophyll and benzoquinone to a region of high viscosity. Hydroquinone is not effective in producing these optical changes. Similar results are achieved at room temperature by using as solvent a degassed mixture of the alcohols: cyclohexanol, tert-butanol, and ethanol (CBE). Difference spectra show bleaching of the chlorophyll bands and increased absorbance in the intermediate wavelength region (460–580 nm). Decay kinetics are first order, while the rise is complicated (probably biphasic). ESR signals have no hyperfine structure and also decay by first order kinetics, at a rate which is faster than that of the optical changes. The ESR signals reach a steady state more rapidly than the optical signals, without biphasic kinetics. These results demonstrate that at least two species are generated. Addition of acid increases the amount of bleaching in CBE, while small amounts of base decrease it. Larger amounts of base cause chlorophyll bleaching to completely disappear and only the semiquinone anion is observed. Activation energies for the chlorophyll a-benzoquinone photoreaction in CBE are 10–14 kcal/mole. Lower potential quinones give lower activation energies. The rate constant for quenching of the triplet state of chlorophyll a by β-carotene in CBE is 7.5±0.5×108 (M set)-1. β-carotene also quenches photoproduct formation. The bimolecular rate constant for formation of the photoproduct with benzoquinone was calculated to be 7×108 (Msec)-1. The redox potential of the quinone affects both the magnitude of the chlorophyll absorbance changes and the rate of decay. The higher the potential, the larger the changes and the slower the decay. Other porphyrin systems show similar photoreactions only if they are chelated with a group II metal, such as Mg2+, Cd+2, or Zn+2. The results are interpreted in terms of the formation, by a triplet-sensitized one-electron transfer from solvent to quinone, of a chlorophyll-semiquinone complex which is stabilized via coordination with the chelated metal.  相似文献   

19.
Abstract— Absorption changes induced in isolated chloroplasts by excitation with repetitive flash groups have been measured at 690 nm, indicating the photochemical turnover of chlorophyll-aII (Chl-αn), and at 480 nm and 513 nm respectively, reflecting via electrochromic effect the formation of a transmembrane electric field. The data are compared with measurements of oxygen evolution. In chloroplasts with practically fully intact oxygen evolving capacity it was found: 1. The initial amplitude of the 690 nm absorption change induced by the second flash as a function of the time tv between the first and second flash of a group increases with a half life of about 35 µs. On the other hand, the average oxygen yield due to the second flash as a function of the time tv rises with a half life of about 600 µs (and a kinetics in the ms-range of minor extent), confirming the data of Vater et al. (1968). 2. Under far red background illumination, where contributions due to PS I in the µs-range can be excluded, the difference spectrum in the red of the absorption changes induced by the first flash corresponds with that of the absorption changes induced by the second flash fired 200 µ after the first flash. 3. The pattern of the absorption changes at 690 nm induced by repetitive double flash groups at tv= 200 µs does not markedly change in normal chloroplasts by the presence of DBMIB?. Similar 690 nm absorption changes occur in trypsin treated chloroplasts, independent of the presence of DCMU. 4. The fast regeneration in the µs-range of Chl-an is also observed in the third flash of a triple flash group at a time tv= 200 µs between the flashes of the group. 5. The initial amplitudes of the absorption changes with a decay kinetics slower than 100 µs induced by the second flash at 480 nm and 513 nm, respectively, as a function of the time t, between the first and second flash of a group, are characterized by a recovery half-time of about 600 µs, confirming earlier measurements at 520 nm (Witt and Zickler, 1974). On the basis of these results it is inferred that there does exist a photoreaction of Chl-αn., with an electron acceptor, referred to as Xa, other than the ‘primary’ plastoquinone acceptor X320, if X320 persists in its reduced state. Under conditions of X320 being in the reduced state, this photochemical reaction was shown to be highly dissipative with respect to charging up the watersplitting enzyme system Y. Furthermore, this Chl-an-photoreaction with Xa does not lead to a vectorial transmembrane charge separation, which is stable for more than a few microseconds. Different models for the functional and structural organization of PS II are discussed.  相似文献   

20.
The mutation sites of the four mutants F35Y, P40V, V45E and V45Y of cytochrome b5 are located at the edge of the heme-binding pocket. The solvent accessible areas of the “pocket inte-rior“ of the four mutants and the wild-type cytochrome b5 have been calculated based on their crystal structures at high resolu-tion. The change in the hydrophobicity of the heme-binding pocket resulting from the mutation can be quantitatively de-scribed using the difference of the solvent accessible area of the “pocket interior“ of each mutant from that of the wild-type cy-tochrome b5. The influences of the hydrophobicity of the heme-binding pocket on the protein stability and redox potential are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号