首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of deformation by rolling or quenching from temperatures close to the glass transition temperature on the damping constant and the shear modulus of preliminarily annealed bulk samples of a Zr52.5Ti5Cu17.9Ni14.6Al10 metallic glass was studied. These treatments are found to result in recovery of the “irreversible” contributions to the damping constant and the shear modulus, and the deformation treatment is shown to lead to an increase in the amplitude-dependent internal friction.  相似文献   

2.
The evolution of the shear modulus and the damping decrement during irreversible structural relaxation in a bulk Pd40Cu30Ni10P20 metallic glass in a temperature range below the glass transition temperature has been studied with an inverse torsion pendulum at a frequency of ~25 Hz. It is shown that the irreversible relaxation can be recovered via quenching from temperatures above the glass transition temperature. The spectrum shape, the characteristic activation energies, and the attempt frequencies of the irreversible structural relaxation are estimated.  相似文献   

3.
The interstitialcy theory is used to calculate the kinetics of shear modulus relaxation induced by structural relaxation of metallic glasses. A continuous distribution of activation energies is shown to be a salient feature of the relaxation. High precision in situ contactless electromagnetic acoustic-transformation shear modulus (600- kHz) measurements performed on a Zr-based bulk metallic glass are found to strongly support the approach under consideration. It is revealed that the activation energy spectra derived from isothermal and isochronal shear modulus measurements are in good agreement with each other. It is concluded that the increase of the shear modulus during structural relaxation can be understood as a decrease of the concentration of structural defects similar to dumbbell interstitials in simple crystalline metals.  相似文献   

4.
The logarithmic decrement and shear modulus of a bulk amorphous Zr52.5Ti5Cu17.9Ni14.6Al10 alloy were studied with an inverse torsion pendulum in the range from room temperature to the crystallization temperature and in the frequency range 5–40 Hz. The activation energy spectra of reversible and irreversible structural relaxation were estimated. The results obtained are discussed in the context of a two-energy-level model.  相似文献   

5.
The influence of heat treatment at temperatures up to 550°C on the elastic properties of the Zr52.5Cu17.9Ni14.6Al10Ti5 bulk amorphous alloy is investigated using acoustical measurements. The results obtained are compared with calorimetric and x-ray diffraction data.  相似文献   

6.
By controlling the specimen aspect ratio and strain rate, compressive strains as high as 80% were obtained in an otherwise brittle metallic glass. Physical and mechanical properties were measured after deformation, and a systematic strain-induced softening was observed which contrasts sharply with the hardening typically observed in crystalline metals. If the deformed glass is treated as a composite of hard amorphous grains surrounded by soft shear-band boundaries, analogous to nanocrystalline materials that exhibit inverse Hall-Petch behavior, the correct functional form for the dependence of hardness on shear-band spacing is obtained. Deformation-induced softening leads naturally to shear localization and brittle fracture.  相似文献   

7.
Atomic diffusion in deformed Pd(40)Ni(40)P(20) bulk metallic glass containing a single family of deformation-induced shear bands was measured by the radiotracer technique. The significant, by orders of magnitude, enhancement of the diffusion rate with respect to that in the untransformed matrix suggests that the shear bands represent short-circuit diffusion paths. Correlations between diffusivity, viscosity, and the excess free volume distribution inside of shear bands are discussed.  相似文献   

8.
Detailed acoustic emission (AE) and surface microscopy investigations of the kinetics of shear banding in bulk Zr52.5Ti5Cu17.9Ni14.6Al10 metallic glass at room temperature are presented. The shear band propagates in a jump-like mode as reflected by numerous AE bursts. The time distribution and cluster statistical analysis of AE time series revealed, firstly, that there are two shear banding processes notably different in their spatial scales and, secondly, that formation of shear bands at large strains can be correlated in time and space. Independence of the AE characteristics on the current stress magnitude implies that shear band propagation could not be interpreted as a shear front motion in a viscous Newtonian-like medium. The AE response to shear banding is to a certain extent similar to that of a moving dislocation pile-up escaping to a free surface. It is emphasized that AE and microscopic features of shear banding in the bulk metallic glass are very nearly the same as those found earlier for melt-spun ribbon glasses, indicating that the change in the quenching rate by about four orders of magnitude does not cause the kinetics of shear band nucleation and propagation to vary considerably.  相似文献   

9.
In this Letter, direct experimental evidence is provided for understanding the thermal stability with respect to crystallization in the Zr(41.2)Ti(13.8)Cu(12.5)Ni(10)Be(22.5) glass-forming liquid. Through high-resolution transmission electron microscopy, the atomic-structure evolution in the glass-forming liquid during the isothermal annealing process is clearly revealed. In contrast with the existing theoretical models, our results reveal that, prior to nanocrystallization, there exists a metastable state prone to forming icosahedralike atomic clusters, which impede the subsequent crystallization and hence stabilize the supercooled liquid. The outcome of the current research underpins the topological origin for the excellent thermal stability displayed by the Zr-based bulk metallic glass.  相似文献   

10.
Nonequilibrium atomic dynamics is simulated in single-component metallic glass under the influence of shear strains with different shear rates and temperatures. Based on the simulation data and cluster analysis, such parameters of nucleation processes as the nucleation rate, the size of a critical cluster, and the Zeldovich factor are found. The dependence of these quantities on the shear rate is discussed.  相似文献   

11.
Precision in situ measurements of the shear modulus of bulk metallic glass based on Zr have been performed. The contribution to the shear modulus due to the structural relaxation has been separated. Based on the interstitial theory, the relaxation model explaining the obtained experimental results has been constructed.  相似文献   

12.
13.
In this paper, we report the structure, optical, and gas-sensing properties of Co-doped ZnO nanocrystals prepared by a simple solvothermal route. The red-shift of the band-gap edge is attributed to a merging of donor and conduction bands due to Co doping. Photoluminescence (PL) spectra were used to study the dependence of doping on the deep-level emission, which show obvious enhanced blue-green emission after Co doping. Gas sensors were prepared and tested for the detection of C2H5OH in air. It is found that the Co-doped nanocrystals have a significantly better sensing performance than pure ZnO, which is comparable to the Au-functionalized ZnO sensors. We provide a possible explanation in terms of the sensing mechanism of the surface reaction process.  相似文献   

14.
J. Basu  N. Nagendra  Y. Li  U. Ramamurty 《哲学杂志》2013,93(15):1747-1760

The evolution of microstructure upon partial crystallization and its influence on the mechanical properties such as hardness, elastic modulus and viscosity in a La 55 Al 25 Cu 10 Ni 5 Co 5 bulk metallic glass alloy are studied. Specimens with various volume fractions of crystalline phases were obtained by annealing the as-cast amorphous alloy above its glass transition temperature and were characterized by transmission electron microscopy. Microscopic examination of the heat-treated samples shows short-range-ordered domains prior to nanocrystallization within the amorphous matrix, followed by the growth and impingement of the crystallites. Whereas the hardness of the annealed samples increases linearly with increasing crystallinity, the elastic modulus and the viscosity both increase abruptly when the crystalline volume fraction is about 40 vol.%, with a only minor variation on either side of this range. The sudden rises in the modulus and viscosity are similar to those in the literature data on the fracture strength of partially crystallized bulk amorphous alloys that shows a steep drop in strength at 30-50 vol.% crystallinity. On the basis of the microscopic observations, it is suggested that the interaction and formation of rigid networks of crystalline phases upon the attainment of a critical second-phase volume fraction may be the possible reason for the sudden change in mechanical properties. Percolation theory is utilized in further substantiating this hypothesis.  相似文献   

15.
Nonequilibrium molecular dynamics simulations of a model amorphous system are performed with the aim of studying the structural transformations induced by external shear influence. We reveal that the shear drive has both positive and negative effects on the structural ordering processes. The dependence of the phase transition rate versus the strain rate at three different temperatures is found.  相似文献   

16.
Samples of Zr(46.25)Ti(8.25)Cu(7.5)Ni(10)Be(27.5) were isothermally annealed and quenched near the glass transition temperature and studied by the pulse-echo overlap technique. The shear modulus G of the samples shows a strong reversible dependence on annealing temperatures and, thus, on the specific configurational potential energy of the equilibrium liquid. The low-T dependence of G of the configurationally frozen glasses shows linear temperature dependence as expected by Debye-Grüneisen theory. The T dependence of G in the liquid state is directly related to the viscosity and fragility of the liquid.  相似文献   

17.
The conditions of the appearance of in-phase oscillations in the time dependences of the low-frequency internal friction and effective shear modulus G eff in Al-0.01 wt% Cu and Al-0.001 wt % Cu alloys are studied. The in-phase oscillations are shown to appear in the alloys only when their dislocation-impurity structure is disturbed from equilibrium and the impurity concentration near a dislocation is optimum. This fact suggests that the in-phase oscillations are due to a collective character of dislocation-impurity interactions, which leads to a transfer of energy of translational dislocation motion to transverse dislocation vibrations in the main slip plane.  相似文献   

18.
Atomistic models for matrix-inclusion systems are generated. Analyses of the systems show that interphase layers of finite thickness appear interlinking the surface of the nanocrystalline inclusion and the embedding amorphous matrix. In a first approximation, the interphase is characterized as an amorphous structure with a density slightly reduced compared to that of the matrix. This result holds for both monatomic hard sphere systems and a Cu(47.5)Zr(47.5)Al(5) alloy simulated by molecular dynamics (MD). The elastic shear and bulk modulus of the interphase are calculated by simulated deformation of the MD systems. Both moduli diminish with decreasing density but the shear modulus is more sensitive against density reduction by one order of magnitude. This result explains recent observations of shear band initiation at the amorphous-crystalline interface during plastic deformation.  相似文献   

19.
Mechanical properties of the glassy specimens fabricated at different cooling rates with a composition of Ti40Zr25Cu12Ni3Be20 were systematically investigated. It was confirmed that faster cooling rates caused not only a larger amount of frozen-in free volume but also a higher glass transition temperature in the bulk glassy alloy. Increase in the free volume was found to favor plastic deformation and then to give rise to larger compressive plasticity, whilst the rise in the glass transition temperature seem...  相似文献   

20.
The present work found the plastic deformability of Zr65Cu17.5Ni10Al7.5 BMG dependent on the cooling rate during the formation from the molten state alloy. The deformation behavior in the compression test of φ 2 mm Zr65Cu17.5Ni10Al7.5 BMGs as-cast or lathed from different sizes as-cast samples was characterized, and they exhibited different plastic strains. The compressive plastic strain increases with the decreasing diameter of the as-cast specimens, i.e. with increasing the cooling rate. It is suggested that free volume content in the BMGs, which is related to the cooling rate during the rapid solidification, could play an important role in the deformation process of the BMGs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号