共查询到20条相似文献,搜索用时 15 毫秒
1.
We predict the robust existence of a novel quantum orbital stripe order in the p-band Bose-Hubbard model of two-dimensional triangular optical lattices with cold bosonic atoms. An orbital angular momentum moment is formed on each site exhibiting a stripe order both in the superfluid and Mott-insulating phases. The stripe order spontaneously breaks time-reversal, lattice translation, and rotation symmetries. In addition, it induces staggered plaquette bond currents in the superfluid phase. Possible signatures of this stripe order in the time of flight experiment are discussed. 相似文献
2.
Yi-Yin Zheng Shan-Tong Chen Zhi-Peng Huang Shi-Xuan Dai Bin Liu Yong-Yao Li Shu-Rong Wang 《Frontiers of Physics》2021,16(2):22501
We study the stability of zero-vorticity and vortex lattice quantum droplets (LQDs), which are described by a two-dimensional (2D) Gross–Pitaevskii (GP) equation with a periodic potential and Lee– Huang–Yang (LHY) term. The LQDs are divided in two types: onsite-centered and offsite-centered LQDs, the centers of which are located at the minimum and the maximum of the potential, respectively. The stability areas of these two types of LQDs with different number of sites for zero-vorticity and vorticity with S = 1 are given. We found that the μ–N relationship of the stable LQDs with a fixed number of sites can violate the Vakhitov–Kolokolov (VK) criterion, which is a necessary stability condition for nonlinear modes with an attractive interaction. Moreover, the μ–N relationship shows that two types of vortex LQDs with the same number of sites are degenerated, while the zero-vorticity LQDs are not degenerated. It is worth mentioning that the offsite-centered LQDs with zero-vorticity and vortex LQDs with S = 1 are heterogeneous. 相似文献
3.
The mapping of photonic states to collective excitations of atomic ensembles is a powerful tool which finds a useful application in the realization of quantum memories and quantum repeaters. In this work we show that cold atoms in optical lattices can be used to perform an entangling unitary operation on the transferred atomic excitations. After the release of the quantum atomic state, our protocol results in a deterministic two qubit gate for photons. The proposed scheme is feasible with current experimental techniques and robust against the dominant sources of noise. 相似文献
4.
A. Kay D. K. K. Lee J. K. Pachos M. B. Plenio M. E. Reuter E. Rico 《Optics and Spectroscopy》2005,99(3):339-356
The regular structures obtained by optical lattice technology and their behavior are analyzed from the quantum information perspective. Initially, we demonstrate that a triangular optical lattice of two atomic species, bosonic or fermionic, can be employed to generate a variety of novel spin-1/2 models that include effective three-spin interactions. Such interactions can be employed to simulate specific one-or two-dimensional physical systems that are of particular interest for their condensed matter and entanglement properties. In particular, connections between the scaling behavior of entanglement and the entanglement properties of closely spaced spins are drawn. Moreover, three-spin interactions are well suited to support quantum computing without the need to manipulate individual qubits. By employing Raman transitions or the interaction of the atomic electric dipole moment with magnetic field gradients, one can generate Hamiltonians that can be used for the physical implementation of geometric or topological objects. This work serves as a review article that also includes many new results. 相似文献
5.
We discuss the ultimate limit imposed by quantum fluctuations of light for resolution of fine details in optical images. For this purpose, we extend in the quantum domain the classical analysis of the object reconstruction, or superresolution, in terms of prolate spheroidal function basis. We derive the expression for ultimate resolution limit in the reconstructed object using an illumination of the full object plane by a multimode squeezed vacuum. We show that the gain in resolution using multimode squeezed light is maximum when the Shannon number of the imaging system is close to unity. 相似文献
6.
The ground state of dipolar bosons placed in an optical lattice is analyzed. We show that the modification of experimentally accessible parameters can lead to the realization and control of different quantum phases, including superfluid, supersolid, Mott insulator, checkerboard, and collapse phases. 相似文献
7.
In the present work we demonstrate how to realize a 1D closed optical lattice experimentally, including a tunable boundary phase twist. The latter may induce "persistent currents" visible by studying the atoms' momentum distribution. We show how important phenomena in 1D physics can be studied by physical realization of systems of trapped atoms in ring-shaped optical lattices. A mixture of bosonic and/or fermionic atoms can be loaded into the lattice, realizing a generic quantum system of many interacting particles. 相似文献
8.
We present a sub-Doppler cooling scheme of a two-trapped-ion crystal by quantum feedback control method. In the scheme, we obtain the motional information by continuously measuring the spontaneous emission photons from one single ion of the crystal, and then apply a feedback force to cool the whole chain down.We derive the cooling dynamics of the cooling scheme using quantum feedback theory and quantum regression theorem. The result shows that with experimentally achievable parameters, our scheme can achieve lower temperature and faster cooling rate than Doppler cooling. 相似文献
9.
The density–density correlation profiles obtained superimposing absorption images from atomic clouds freely expanding after the release of the confining optical lattice can be theoretically described in terms of a generalized quantum measure based on coherent-like states. We show that the corresponding density patterns differ in a testable way from those computed using standard many-body mean values, usually adopted in fitting experimental data. 相似文献
10.
We investigate the quantum tunneling of Bose-Einstein condensates in optical lattices under gravity in the "Wannier-Stark localization" regime and "Landau-Zener tunneling" regime. Our results agree with experimental data [B. P. Anderson et al., Science 282, 1686 (1998); F. S. Cataliotti et al., Science 293, 843 (2001)]. We obtain the total decay rate which is valid over the entire range of temperatures, and show how it reduces to the appropriate results for the classical thermal activation at high temperatures, the thermally assisted tunneling at intermediate temperatures, and the pure quantum tunneling at low temperatures. We design an experimental protocol to observe this new phenomenon in further experiments. 相似文献
11.
We study the superfluid-to-Mott insulator transition of bosons in a two-legged ladder optical lattice of a type accessible in current experiments on double-well optical lattices. The zero-temperature phase diagram is mapped out, with a focus on its dependence upon interchain hopping and the tilt between double wells. We find that the unit-filling Mott phase exhibits a nonmonotonic behavior as a function of the tilt parameter, producing a reentrant phase transition between the Mott insulator and superfluid phases. 相似文献
12.
We review our recent theoretical advances in phase transition of cold atoms in optical lattices, such as triangular lattice, honeycomb lattice, and Kagomé lattice. By employing the new developed numerical methods called dynamical cluster approximation and cellular dynamical mean-field theory, the properties in different phases of cold atoms in optical lattices are studied, such as density of states, Fermi surface and double occupancy. On triangular lattice, a reentrant behavior of phase translation line between Fermi liquid state and pseudogap state is found due to the Kondo effect. We find the system undergoes a second order Mott transition from a metallic state into a Mott insulator state on honeycomb lattice and triangular Kagomé lattice. The stability of quantum spin Hall phase towards interaction on honeycomb lattice with spin-orbital coupling is systematically discussed. And we investigate the transition from quantum spin Hall insulator to normal insulator in Kagomé lattice which includes a nearest-neighbor intrinsic spin-orbit coupling and a trimerized Hamiltonian. In addition, we propose the experimental protocols to observe these phase transition of cold atoms in optical lattices. 相似文献
13.
We propose an interaction-induced cooling mechanism for two-component cold fermions in an optical lattice. It is based on an increase of the spin entropy upon localization, an analogue of the Pomeranchuk effect in liquid helium 3. We discuss its application to the experimental realization of the antiferromagnetic phase. We illustrate our arguments with dynamical mean-field theory calculations. 相似文献
14.
15.
We show that by raising the lattice "adiabatically" as in many current optical lattice experiments on bosons, even though the temperature may decrease initially, it will eventually rise linearly with lattice height, taking the system farther away from quantum degeneracy. This increase has nothing to do with the entropy of the bulk Mott phase and is caused by the adiabatic compression of the mobile atoms between Mott layers. Our studies show that one can reverse the temperature rise to reach quantum degeneracy by adiabatic expansion, which can be achieved by a variety of methods. 相似文献
16.
In this Letter we study various spin correlated insulating states of F=2 cold atoms in optical lattices. We find that the effective spin exchange interaction due to virtual hopping contains an octopole coupling between two neighboring lattice sites. Depending on scattering lengths and numbers of particles per site the ground states are either rotationally invariant dimer or trimer Mott insulators or insulating states with various spin orders. Three spin-ordered insulating phases are ferromagnetic, cyclic, and nematic Mott insulators. We estimate the phase boundaries for states with different numbers of atoms per lattice site. 相似文献
17.
《Comptes Rendus Physique》2018,19(6):365-393
Ultracold atomic gases provide a fantastic platform to implement quantum simulators and investigate a variety of models initially introduced in condensed matter physics or other areas. One of the most promising applications of quantum simulation is the study of strongly correlated Fermi gases, for which exact theoretical results are not always possible with state-of-the-art approaches. Here, we review recent progress of the quantum simulation of the emblematic Fermi–Hubbard model with ultracold atoms. After introducing the Fermi–Hubbard model in the context of condensed matter, its implementation in ultracold atom systems, and its phase diagram, we review landmark experimental achievements, from the early observation of the onset of quantum degeneracy and superfluidity to the demonstration of the Mott insulator regime and the emergence of long-range anti-ferromagnetic order. We conclude by discussing future challenges, including the possible observation of high- superconductivity, transport properties, and the interplay of strong correlations and disorder or topology. 相似文献
18.
《Physics letters. A》2005,335(4):310-315
In this Letter we study the superfluid–Mott-insulator (SMI) phase transition of two-component Bose–Einstein condensates (BECs) in an optical lattice. The analytic exciation energy spectrum is obtained by means of Bogoliubov transformation and hence the SMI phase transition condition is determined explicitly. Moreover, the characteristics of superfluid phase are explained from the energy spectrum. 相似文献
19.
We numerically investigate mixtures of two interacting bosonic species with unequal parameters in one-dimensional optical lattices. In large parameter regions full phase segregation is seen to minimize the energy of the system, but the true ground state is masked by an exponentially large number of metastable states characterized by microscopic phase separation. The ensemble of these quantum emulsion states, reminiscent of emulsions of immiscible fluids, has macroscopic properties analogous to those of a Bose glass, namely, a finite compressibility in absence of superfluidity. Their metastability is probed by extensive quantum Monte Carlo simulations generating rich correlated stochastic dynamics. The tuning of the repulsion of one of the two species via a Feshbach resonance drives the system through a quantum phase transition to the superfluid state. 相似文献
20.
A major challenge in realizing antiferromagnetic and superfluid phases in optical lattices is the ability to cool fermions. We determine the equation of state for the 3D repulsive Fermi-Hubbard model as a function of the chemical potential, temperature, and repulsion using unbiased determinantal quantum Monte Carlo methods, and we then use the local density approximation to model a harmonic trap. We show that increasing repulsion leads to cooling but only in a trap, due to the redistribution of entropy from the center to the metallic wings. Thus, even when the average entropy per particle is larger than that required for antiferromagnetism in the homogeneous system, the trap enables the formation of an antiferromagnetic Mott phase. 相似文献