首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVE: The purpose of this study was to evaluate cartilage defect at medial femoral condyle on MRI in early osteoarthritis and to compare with early osteoarthritis with meniscal tear without clear cartilage defect. MATERIALS AND METHODS: Twelve patients with medial pain of the knee and cartilage defect without meniscal tear by MRI were studied for cartilage defect. There were two males and 10 females with cartilage defect, and they were between 42 and 61 years of age (average, 51.6). Fifteen patients with medial pain of the knee and meniscal tear and without clear cartilage defect had been studied as meniscal tear cases. There were five males and 10 females with meniscal tear, and they were between 45 and 61 years of age (average 54.5). In both groups, knee injuries by trauma and Kellgren radiographic grade III and IV osteoarthritis were excluded. We compared cartilage defect cases and meniscal tear cases by gender, age, medial meniscus displacement ratio from the edge of the tibial medial joint surface, femorotibial angle (FTA) and Mikulicz line. We measured medial meniscus displacement ratio by the proportion of medial meniscus lesion protruding from the edge of tibial medial joint surface to all the medial meniscus width on MRI. For the evaluation of Mikulicz line, we measured the score by the length from tibial medial joint surface to Mikulicz line to tibial plateau width. chi(2) Test was used for gender, and Mann-Whitney U test was used for age, medial meniscus displacement ratio, FTA and Mikulicz line. RESULTS: Statistically significant difference was not observed between cartilage defect cases and meniscal tear cases for age and gender. Medial meniscus displacement ratio was 13+/-12.3% in cartilage defect cases and 50.4+/-20.1% in meniscal tear cases. Medial meniscus displacement ratio in cartilage defect cases was significantly smaller than in meniscal tear cases (P=.0001). FTA was 174.9+/-2.2 degrees in cartilage defect cases and 178.3+/-4.8 degrees in meniscal tear cases. FTA in cartilage defect cases was significantly smaller than in meniscal tear cases (P=.00390). The score by the length from tibial medial joint surface to Mikulicz line to tibial plateau width was 35.8+/-11.8% in cartilage defect cases and 21.7+/-15.8% in meniscal tear cases. Mikulicz line in cartilage defect cases passes more laterally than in meniscal tear cases significantly (P=.0264). CONCLUSION: In this study, we reported cartilage defect cases at medial femoral condyle in the early osteoarthritis of the knee. We think that these cases were different from early osteoarthritis with meniscal tear in alignment of lower limb and onset mechanism. It is necessary to evaluate meniscus and cartilage in MRI when we diagnose middle-aged patients with medial pain of the knee and without remarkable changes of X-ray.  相似文献   

2.
Quantification of changes in T(2) relaxation time, in human cartilage, with progression of osteoarthritis (OA), and evaluation of qualitative correlations with clinical evaluation, histology and polarized light microscopy (PLM). Cartilage-bone plugs were harvested from fresh cadaveric knees (n = 10) and specimens after surgical knee replacement (n = 2) at 12 locations, including lateral and medial sides of tibia, femora and patella. Magnetic resonance imaging was performed at 1.5 Tesla using a.2D spin echo sequence. Histological slices were assessed for OA severity through a grading scale based on combined histological and PLM results. T(2) values in clinically moderate OA were generally higher than in severe OA and normal cartilage. Significant association was established between normal and early OA subjects and T(2) variation, in the medial compartment of the knee (p < 0.05) but especially in the medial tibial cartilage (p < 0.00005). As expected, medial and lateral tibio-femoral compartments underwent more severe degeneration. Additionally, there were intracompartmental variation of the relaxation times and histological patterns, which demonstrate the underlying focal involvement of OA in the knee. Furthermore, T(2) values reflected OA pathogenesis with a positive correlation with histology grading scale. Finally, increased T(2) is correlated to histological degeneration of cartilage and may be a good marker for early OA in tibial articular cartilage.  相似文献   

3.
This study compared magnetic resonance imaging (MRI) and surface electromyography (EMG) to evaluate the effect of knee angle upon plantar flexion activity in the triceps surae muscles [medial & lateral gastrocnemius (MG, LG) and the soleus (SOL)]. Two weight & height matched groups performed identical protocols, twelve (6M, 6F) in the MRI group, twelve (8M, 4F) in the EMG group. Subjects plantar flexed dynamically for 2 min at 25% of 1-repetition maximum voluntary contraction (1-RM). Exercise was performed with the knee extended (0 degrees flexion), flexed (90 degrees ), and partially flexed (45 degrees ). In the MRI group spin-echo images were acquired before and immediately following each exercise session. T(2) times, calculated at rest and after exercise by fitting the echoes to a monoexponential decay pattern with a least-squares algorithm, were compared with EMG data. In the EMG group a bipolar electrode was used to collect samples were from the MG, LG, SOL, and anterior tibialis (TA) during exercise at each knee angle, MRI also examined the peroneus (PER). At 0 degrees flexion MRI demonstrated a significant post-exercise T(2) increase in the MG (p < or = 0.001), LG (p < or = 0.001), and PER (p < or = 0.01), with no T(2) change in the SOL or TA. At 90 degrees flexion there was a significant T(2) increase in the SOL (p < or = 0.001) with no significant T(2) change in the MG, LG, PER, or TA. At 45 degrees T(2) increased significantly in the SOL (p < or = 0.001) and LG (p < or = 0.05), but not the MG, PER, or TA. EMG produced similar results with the exception that there was significant activity in the TA during the relaxation cycle of the 90 degrees protocol. We conclude that: 1) Soleus activity is measurable by MRI; and 2) MRI and EMG produce similar results from different physiological sources, and are therefore complementary tools for evaluating muscle activity.  相似文献   

4.
Both NMR spectroscopy and MRI were used to investigate the dependencies of multi-component T2 and T1ρ relaxation on the anisotropy of bovine nasal cartilage (BNC). The non-negative least square (NNLS) method and the multi-exponential fitting method were used to analyze all experimental data. When the collagen fibrils in nasal cartilage were oriented at the magic angle (55°) to the magnetic field B0, both T2 and T1ρ were single component, regardless of the spin-lock field strength or the echo spacing time in the pulse sequences. When the collagen fibrils in nasal cartilage were oriented at 0° to B0, both T2 and T1ρ at a spin-lock field of 500 Hz had two components. When the spin-lock field was increased to 1000 Hz or higher, T1ρ relaxation in nasal cartilage became a single component, even when the specimen orientation was 0°. These results demonstrate that the specimen orientation must be considered for any multi-component analysis, even for nasal cartilage that is commonly considered homogenously structured. Since the rapidly and slowly relaxing components can be attributed to different portions of the water population in tissue, the ability to resolve different relaxation components could be used to quantitatively examine individual molecular components in connective tissues.  相似文献   

5.
The multi-components of T2 relaxation in cartilage and tendon were investigated by microscopic MRI (μMRI) at 13 and 26 μm transverse resolutions. Two imaging protocols were used to quantify T2 relaxation in the specimens, a 5-point sampling and a 60-point sampling. Both multi-exponential and non-negative-least-square (NNLS) fitting methods were used to analyze the μMRI signal. When the imaging voxel size was 6.76 × 10−4 mm3 and within the limit of practical signal-to-noise ratio (SNR) in microscopic imaging experiments, we found that (1) canine tendon has multiple T2 components; (2) bovine nasal cartilage has a single T2 component; and (3) canine articular cartilage has a single T2 component. The T2 profiles from both 5-point and 60-point methods were found to be consistent in articular cartilage. In addition, the depletion of the glycosaminoglycan component in cartilage by the trypsin digestion method was found to result in a 9.81–20.52% increase in T2 relaxation in articular cartilage, depending upon the angle at which the tissue specimen was oriented in the magnetic field.  相似文献   

6.
In this study, we combined the advantages of a fast multi-slice spiral imaging approach with a multiple gradient-echo sampling scheme at high magnetic field strength to improve quantification of BOLD and inflow effects and to estimate T2* relaxation times in functional brain imaging. Eight echoes are collected with echo time (TE) ranging from 5 to 180 ms. Acquisition time per slice and echo time is 25 ms for a nominal resolution of 4 x 4 x 4 mm3. Evaluation of parameter images during rest and stimulation yields no significant activation on the inflow sensitive spin-density images (rho or I0-maps) whereas clear activation patterns in primary human motor cortex (M1) and supplementary motor area (SMA) are detected on BOLD sensitive T2*-maps. The calculation of relaxation times and rates of the activated areas over all subjects yields an average T2* +/- standard deviation (SD) of 46.1+/-4.5 ms (R2* of 21.8+/-2.2 s(-1)) and an average increase (deltaT2* +/- SD) of 0.93+/-0.47 ms (deltaR2* of -0.4+/-0.14 s(-1)). Our findings demonstrate the usefulness of a multiple gradient echo data acquisition approach in separating various vascular contributions to brain activation in fMRI.  相似文献   

7.
Magnetic resonance imaging of water has been used to visualise the migration of three paramagnetic species, 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (4-hydroxy-TEMPO, 1), Cu2+ ions, and copper ethylenediamine-tetraacetate (CuEDTA, 2) through cartilage on the femoral condyle of the chicken knee. The migration of copper ions is dominated by strong binding with the cartilage. In contrast, both 1 and 2 bind weakly, and their diffusion can be followed as a progressive wave through the cartilage and subsequently into the trabecular bone structure.  相似文献   

8.
Besides their use in contrast-enhanced proton magnetic resonance imaging (MRI), contrast agents were found to be useful as tracer molecules. Since paramagnetic ions in water have the ability to reduce the T1 of protons around them, MRI can determine the locations of Mn2+ and Gd3+ of ppm concentration in water. In opaque porous media saturated with water, MRI revealed diffusional motions of three contrast agents: MnCl2 (molecular-weight [M.W.], 126), gadolinium-diethylene-triaminepenta acetic acid (Gd-DTPA) (M.W., 743) and albumin (Gd-DTPA) (M.W., 94,000) at a diffusional displacement ratio of 9:5:2. With the aid of these contrast agents, the transport of low- to high-molecular-weight molecules in opaque water media such as living bodies can be observed using MRI.  相似文献   

9.
PurposeThis study aimed to establish the topographical and zonal T2 patterns of multi-resolution MRI in medial tibial cartilage in a canine model of osteoarthritis (OA), initiated by the anterior cruciate ligament (ACL) transection surgery, and studied after 8-weeks and 12-weeks post-surgery.MethodsArticular cartilage from healthy, two stages of contralateral, and of OA knees were quantitatively imaged by the MRI T2 protocols at two imaging resolutions (100 and 17.6 μm/pixel). The zonal T2 changes at five topographical locations (anterior (AMT), exterior (EMT), posterior (PMT), central (CMT) and interior (IMT) medial tibia) and subsequent two averaged regions (covered by meniscus and exposed) were analyzed. At each location, full-thickness cartilage was studied in four sub-tissue zones (superficial, transitional, upper and lower radial zones).ResultsTissue degradation can be detected by measurable changes of T2, which is resolution- and orientation-dependent. T2 changes ranging from +28.82% increase (SZ, PMT) to −23.15% decrease (RZ1, AMT) in healthy to disease (8C), with the largest increase of T2 in the surface tissue. Various location-dependent patterns of degradation are found over the tibial surface, most commonly shown in early-stage OA (8C) on the anterior site, different from the posterior. Finally, the contralateral cartilage has specific degradation patterns, different from those in OA cartilage.ConclusionsThis is the first quantitative and highest multi-resolution characterization of cartilage at five topographical locations over the medial tibial plateau with fine zonal resolution in an animal model of OA, which would benefit future investigation of human OA in clinics.  相似文献   

10.
The factors determining the longitudinal relaxation time (T1) of water protons in protein solutions were investigated by analyzing the effects of thermal denaturation on the T1 of the water protons. We treated the water protons and the protein protons "on a protein surface" as a dipole-dipole coupled two-spin system where relative translational diffusion is the dominant mechanism, and measured the change in the time development of the nuclear Overhauser effect (NOE) factors of the water protons. The T1 of the water protons was shortened markedly when the proteins were thermally denatured. Our analysis indicates that this relaxation enhancement is due to an increase in the value of the translational correlation time as well as the fraction of hydration water molecules, though the influence of "proton exchange" between the water protons and the labile protein protons cannot be completely neglected.  相似文献   

11.
The structure of articular cartilage is separated into three layers of differently oriented collagen fibers, which is accompanied by a gradient of increasing glycosaminoglycan (GAG) and decreasing water concentration from the top layer towards the bone interface. The combined effect of these structural variations results in a change of the longitudinal and transverse relaxation times as a function of the distance from the cartilage surface. In this paper, this dependence is investigated at a magnetic field strength of 0.27 T with a one-dimensional depth resolution of 50 μm on bovine hip and stifle joint articular cartilage. By employing this method, advantage is taken of the increasing contrast of the longitudinal relaxation rate found at lower magnetic field strengths. Furthermore, evidence for an orientational dependence of relaxation times with respect to an axis normal to the surface plane is given, an observation that has recently been reported using high-field MRI and that was explained by preferential orientations of collagen bundles in each of the three cartilage zones. In order to quantify the extent of a further contrast mechanism and to estimate spatially dependent glycosaminoglycan concentrations, the data are supplemented by proton relaxation times that were acquired in bovine articular cartilage that was soaked in a 0.8 mM aqueous Gd++ solution.  相似文献   

12.
The depth-wise variation of T(2) relaxation time is known to reflect the collagen network architecture in cartilage, while the delayed Gadolinium Enhanced MRI of Cartilage (dGEMRIC) technique is sensitive to tissue proteoglycan (PG) concentration. As the cartilage PG content varies along the tissue depth, the depth-dependent accumulation of the contrast agent may affect the inherent T(2) of cartilage in a nonconstant manner. Therefore, T(2) and dGEMRIC are typically measured in separate MRI sessions. In the present in vitro MRI study at 9.4 T, depth-wise T(2) profiles and collagenous zone thicknesses as determined from T(2) maps in the absence and presence of Gd-DTPA(2-) (T(2) and T(2Gd), respectively) were compared in samples of intact human articular cartilage (n=65). These T(2) measures were further correlated with birefringence (BF) of polarized light microscopy (PLM) to quantify the ability of MRI to predict the properties of the collagen fibril network. The reproducibility of the T(2) measurement in the current setup was also studied. Typical tri-laminar collagen network architecture was observed both with and without Gd-DTPA(2-). The inverse of BF (1/BF) correlated significantly with both T(2) and T(2Gd) (r=0.91, slope=0.56 and r=0.90, slope=0.63), respectively. The statistically significant linear correlations between zone thicknesses as determined from T(2) and T(2Gd) were r=0.55 (slope=0.49), r=0.74 (slope=0.71) and r=0.95 (slope=0.94) for superficial, middle and deep tissue zones, respectively. Reproducibility of the T(2) measurement was worst for superficial cartilage. Consistent with PLM, T(2) and T(2Gd) measurements reveal highly similar depth-dependent information on collagen network in intact human cartilage. Thus, dGEMRIC and T(2) measurements in one MRI session are feasible for intact articular cartilage in vitro.  相似文献   

13.
Dairy cream, as a suspension of lipid droplets in water, is a potentially useful magnetic resonance imaging (MRI) phantom material and an interesting material for studying fundamental relaxation mechanisms. Here we report a strong increase in the transverse relaxation rates with field strength for both the water and lipid protons in dairy cream. Also, studies at 4.7 T reveal a nonlinear response of transverse relaxation rates with increasing concentration of a common gadolinium (Gd)-based contrast agent, including an initial decrease of water relaxation rates as measured with Hahn spin echoes at the lower Gd concentrations. The results are treated within the framework of a model in which the magnetic susceptibility difference between the lipid droplets and the aqueous phase plays the prominent role for transverse relaxation. Second-order polynomial fits of the water proton transverse relaxation rate dependence on field strength and on Gd concentration at 4.7 T provided experimental parameters from which model parameters are extracted and compared with expectations available from the literature.  相似文献   

14.
Relaxation rates in the rotating frame (R1rho) and spin-spin relaxation rates (R2) were measured in articular cartilage at various orientations of cartilage layer to the static magnetic field (B0), at various spin locking field strengths and at two different static magnetic field strengths. It was found that R1rho in the deep radial zone depended on the orientation of specimens in the magnet and decreased with increasing the spin locking field strength. In contrast, R1rho values in the transitional zone were nearly independent of the specimen orientation and the spin locking field strength. Measurements of the same specimens at 2.95 and 7.05 T showed an increase of R1rho and most R2 values with increasing B0. The inverse B0 dependence of some R2 values was probably due to a multicomponent character of the transverse magnetization decay. The experiments revealed that the dominant T1rho and T2 relaxation mechanism at B0 < or = 3 T is a dipolar interaction due to slow anisotropic motion of water molecules in the collagen matrix. On average, the contribution of scalar relaxation due to rapid proton exchange in femoral head cartilage at 2.95 T is about 6% or less of the total R1rho at the spin locking field of 1000 Hz.  相似文献   

15.
Contrast media such as gadolinium-diethlene-triamine pentaacetic acid (Gd-DTPA) is used for MRI. Recently there have been some reports about diagnosis using contrast media for the MRI T(1) image for the quantitative evaluation of articular cartilage degeneration. This may be a useful method to evaluate the lesion of the articular cartilage or to confirm therapeutic progress. Whether or not contrast is used, the use of the calculated T(1) image is effective for the quantitative evaluation of the degeneration of knee joint cartilage. However, our system copes with the format of every MRI image even if software of the calculated T(1) image isn't often prepared in the commercial MRI device. So, we developed general purpose image data processing software that can be processed on the preexisting three-dimensional image data processing system.  相似文献   

16.
Non-invasive assessment of cartilage properties, specifically water content, could prove helpful in the diagnosis of early degenerative joint diseases. Transverse relaxation times T(2) of human articular cartilage (34 cartilage slices of three donors) were measured on a pixel-by-pixel basis in a clinical whole body MR system in vitro. In vivo feasibility to measure quantitative T(2) maps was shown for human patellar cartilage. The relaxation times of cartilage with collagen in the radial zone oriented perpendicular to the magnetic field increased from approximately 10 ms near the bone to approximately 60 ms near the articular surface. Cartilage water content of the tibial plateau and femoral condyles could be determined from the correlation with T(2) (R(2) = 0.71) with an error of approximately 2 wt.%. In vivo, directional variation would need to be considered. If confirmed in vivo, T(2) measurements could potentially serve as a non-invasive tool for the evaluation of the status and distribution of water content in articular cartilage.  相似文献   

17.
BackgroundIn MRI of formalin-fixed tissue one of the problems is the dependence of tissue relaxation properties on formalin composition and composition of embedding medium (EM) used for scanning. In this study, we investigated molecular mechanisms by which the EM composition affects T2 relaxation directly and T1 relaxation indirectly.ObjectiveTo identify principal components of formaldehyde based EM and the mechanism by which they affect relaxation properties of fixed tissue.MethodsWe recorded high resolution 1H NMR spectra of common formalin fixatives at temperatures in the range of 5 °C to 45 °C. We also measured T1 and T2 relaxation times of various organs of formalin fixed (FF) zebrafish at 7 T at 21 °C and 31 °C in several EM with and without fixative or gadolinium contrast agents.ResultsWe showed that the major source of T2 variability is chemical exchange between protons from EM hydroxyls and water, mediated by the presence of phosphate ions. The exchange rate increases with temperature, formaldehyde concentration in EM and phosphate concentration in EM. Depending on which side of the coalescence the system resides, the temperature increase can lead to either shortening or prolongation of T2, or to no noticeable change at all when very close to the coalescence. Chemical exchange can be minimized by washing out from EM the fixative, the phosphate or both.ConclusionThe dependence of T2 in fixed tissue on the fixative origin and composition described in prior literature could be attributed to the phosphate buffer accelerated chemical exchange among the fixative hydroxyls and the tissue water. More consistent results in the relaxation measurements could be obtained by stricter control of the fixative composition or by scanning fixed tissue in PBS without fixative.  相似文献   

18.
PurposeThe development of ultrashort echo time (UTE) MRI sequences has led to improved imaging of tissues with short T2 relaxation times, such as the deep layer cartilage and meniscus. UTE combined with adiabatic T preparation (UTE-Adiab-T) is an MRI measure with low sensitivity to the magic angle effect. This study aimed to investigate the sensitivity of UTE-Adiab-T to mechanical load-induced deformations in the tibiofemoral cartilage and meniscus of human cadaveric knee joints.MethodsEight knee joints from young (42 ± 12 years at death) donors were evaluated on a 3 T scanner using the UTE-Adiab-T sequence under four sequential loading conditions: load = 0 N (Load0), load = 300 N (Load1), load = 500 N (Load2), and load = 0 N (Unload). UTE-Adiab-T was measured in the meniscus (M), femoral articular cartilage (FAC), tibial articular cartilage (TAC), articular cartilage regions uncovered by meniscus (AC-UC), and articular cartilage regions covered by meniscus (AC-MC) within region of interests (ROIs) manually selected by an experienced MR scientist. The Kruskal–Wallis test, with corrected significance level for multiple comparisons, was used to examine the UTE-Adiab-T differences between different loading conditions.ResultsUTE-Adiab-T decreased in all grouped ROIs under both Load1 and Load2 conditions (−18.7% and − 16.9% for M, −18.8% and − 12.6% for FAC, −21.4% and − 10.7% for TAC, −26.2% and − 13.9% for AC-UC, and − 16.9% and − 10.7% for AC-MC). After unloading, average UTE-Adiab-T increased across all ROIs and within a lower range compared with the average UTE-Adiab-T decreases induced by the two previous loading conditions. The loading-induced differences were statistically non-significant.ConclusionsWhile UTE-Adiab-T reduction by loading is likely an indication of tissue deformation, the increase of UTE-Adiab-T within a lower range by unloading implies partial tissue restoration. This study highlights the UTE-Adiab-T technique as an imaging marker of tissue function for detecting deformation patterns under loading.  相似文献   

19.
We investigated the histopathological and immunohistochemical effects of loading on cartilage repair in rat full-thickness articular cartilage defects. A total of 40 male 9-week-old Wistar rats were studied. Full-thickness articular cartilage defects were created over the capsule at the loading portion in the medial condyle of the femur. Twenty rats were randomly allocated into each of the 2 groups: a loading group and a unloading group. Twenty rats from these 2 groups were later randomly allocated to each of the 2 groups for evaluation at 1 and 2 weeks after surgery. At the end of each period, knee joints were examined histopathologically and immunohistochemically. In both groups at 1 and 2 weeks, the defects were filled with a mixture of granulation tissue and some remnants of hyaline cartilage. The repair tissue was not stained with toluidine blue in both groups. Strong staining of type I collagen was observed in the repair tissue of both groups. The area stained with type I collagen was smaller in the unloading group than in the loading groups, and the stained area was smaller at 2 weeks than at 1 week. In the staining for type II collagen, apparent staining of type II collagen was observed in the repair tissue of both groups at 1 week. At 2 weeks, there was a tendency toward a higher degree of apparent staining in the loading group than in the unloading group. Accordingly, these results indicated that loading and unloading in the early phase of cartilage repair have both merits and demerits.  相似文献   

20.
Glycosaminoglycan Chemical Exchange Saturation Transfer (gagCEST) is an important molecular MRI methodology developed to assess changes in cartilage GAG concentrations. The correction for B0 field inhomogeneity is technically crucial in gagCEST imaging. This study evaluates the accuracy of the B0 estimation determined by the dual gradient echo method and the effect on gagCEST measurements. The results were compared with those from the commonly used z-spectrum method. Eleven knee patients and three healthy volunteers were scanned. Dual gradient echo B0 maps with different ?TE values (1, 2, 4, 8, and 10 ms) were acquired. The asymmetry of the magnetization transfer ratio at 1 ppm offset referred to the bulk water frequency, MTRasym(1 ppm), was used to quantify cartilage GAG levels. The B0 shifts for all knee patients using the z-spectrum and dual gradient echo methods are strongly correlated for all ?TE values used (r = 0.997 to 0.786, corresponding to ?TE = 10 to 1 ms). The corrected MTRasym(1 ppm) values using the z-spectrum method (1.34% ± 0.74%) highly agree only with those using the dual gradient echo methods with ?TE = 10 ms (1.72% ± 0.80%; r = 0.924) and 8 ms (1.50% ± 0.82%; r = 0.712). The dual gradient echo method with longer ?TE values (more than 8 ms) has an excellent correlation with the z-spectrum method for gagCEST imaging at 3 T.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号