首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Matrix relations for orthogonal polynomials associated to a non-definite linear functional c are found. In addition, the reproducing kernels for the functional c are introduced and the coefficients of the Gaussian quadrature formulas for the functional c are also calculated by means of a procedure similar to that developed by Brezinski for definite functionals.  相似文献   

2.
In this paper a new presentation of orthogonal polynomials is given. It is based on the introduction of two auxiliary sequences of arbitrary monic polynomials and it leads to a very simple derivation of the usual determinantal formulae for orthogonal polynomials and of their recurrence relations either in the definite or in the indefinite case. New expressions for the coefficients of these recurrence relations are obtained and they are compared to the usual ones from the point of view of their numerical stability. The qd-algorithm is also recovered very easily.  相似文献   

3.
It is shown that the ratio of orthogonal polynomials with exponentially increasing recurrence coefficients is closely related to some new orthogonal q-polynomials of which the recurrence coefficients converge exponentially fast to zero. These q-polynomials are investigated in detail.  相似文献   

4.
Пустьw(х)∈L[-1, +1] — неотрица тельная функция така я, что $$\frac{{\log ^ + \frac{1}{{w(x)}}}}{{\sqrt {1 - x^2 } }} \in L[ - 1, + 1]$$ и пусть {(р n (х)} — много члены, ортогональные и нормированные с весо мw(x). Мы доказываем следующие две теорем ы, являющиеся обобщен ием одного известного результа та Н. Винера. I. Для каждого δ, 0<δ<1, суще ствует числоB=B(δ, w) тако е, что если $$f_N (x) = \sum\limits_{j = 1}^N {a_j p_{v_j } (x)} $$ причем выполнено сле дующее условие лакун арности $$\begin{gathered} v_{j + 1} - v_j \geqq B(\delta ,w) (j = 1,2,...,N - 1), \hfill \\ v_1 \geqq B(\delta ,w) \hfill \\ \end{gathered} $$ , то для некоторого С(δ, w) и всехh и δ, для которых $$ - 1 \leqq h - \delta< h + \delta \leqq + 1$$ , имеет место неравенс тво $$\int\limits_{ - 1}^1 {|f_N (x)|^2 w(x)dx \leqq C(\delta ,w)} \int\limits_{h - \delta }^{h + \delta } {|f_N (x)|^2 w(x)dx} $$ каковы бы ни былиa j ,N и h. II. Если формальный ряд $$\sum\limits_{j = 1}^\infty {b_j p_{\mu _j } (x)} $$ удовлетворяет услов ию лакунарности μj+1j→∞ и суммируем, например, м етодом Абеля на произвольно малом отрезке [а, Ь] ?[0,1] к ф ункцииf(x) такой, что \(f(x)\sqrt {w(x)} \in L_2 [a,b]\) , то $$\sum\limits_j {|b_j |^2< \infty } $$ Теорема I — это первый ш аг в направлении проб лемы типа Мюнтца-Саса о замкнут ости подпоследовательно сти pvj(x)} последовател ьности {рn(х)} на отрезке [а, Ь] в метрике С[а, Ь] (см. теорему II стать и).  相似文献   

5.
We determine all orthogonal polynomials having Boas-Buck generating functions g(t)(xf(t)), where% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacqqHOo% qwcaGGOaGaamiDaiaacMcacqGH9aqpruqqYLwySbacfaGaa8hiamaa% BeaaleaacaaIWaaabeaakiaadAeacaqGGaWaaSbaaSqaaiaabgdaae% qaaOGaaeikaiaadggacaGGSaGaa8hiaiaadshacaqGPaGaaeilaiaa% bccacaqGGaGaaeiiaiaadggacqGHGjsUcaaIWaGaaiilaiaa-bcacq% GHsislcaaIXaGaaiilaiaa-bcacqGHsislcaaIYaGaaiilaiablAci% ljaacUdaaeaacqqHOoqwcaGGOaGaamiDaiaacMcacqGH9aqpcaWFGa% WaaSraaSqaaiaaicdaaeqaaOGaamOraiaabccadaWgaaWcbaGaaeOm% aaqabaGccaGGOaWaaSqaaSqaaiaaigdaaeaacaaIZaaaaOGaaiilai% aa-bcadaWcbaWcbaGaaGOmaaqaaiaaiodaaaGccaGGSaGaa8hiaiaa% dshacaGGPaGaa8hiamaaBeaaleaacaaIWaaabeaakiaadAeacaqGGa% WaaSbaaSqaaiaabkdaaeqaaOGaaeikamaaleaaleaacaaIYaaabaGa% aG4maaaakiaacYcacaWFGaWaaSqaaSqaaiaaisdaaeaacaaIZaaaaO% Gaaiilaiaa-bcacaWG0bGaaiykaiaacYcacaWFGaWaaSraaSqaaiaa% icdaaeqaaOGaamOraiaabccadaWgaaWcbaGaaeOmaaqabaGccaGGOa% WaaSqaaSqaaiaaisdaaeaacaaIZaaaaOGaaiilaiaa-bcadaWcbaWc% baGaaGynaaqaaiaaiodaaaGccaGGSaGaa8hiaiaadshacaGGPaGaai% 4oaaqaaiabfI6azjaacIcacaWG0bGaaiykaiabg2da9iaa-bcadaWg% baWcbaGaaGimaaqabaGccaWGgbGaaeiiamaaBaaaleaacaqGZaaabe% aakiaacIcadaWcbaWcbaGaaGymaaqaaiaaisdaaaGccaGGSaGaa8hi% amaaleaaleaacaaIYaaabaGaaGinaaaakiaacYcacaWFGaWaaSqaaS% qaaiaaiodaaeaacaaI0aaaaOGaaiilaiaa-bcacaWG0bGaaiykaiaa% -bcadaWgbaWcbaGaaGimaaqabaGccaWGgbGaaeiiamaaBaaaleaaca% qGZaaabeaakiaabIcadaWcbaWcbaGaaGOmaaqaaiaaisdaaaGccaGG% SaGaa8hiamaaleaaleaacaaIZaaabaGaaGinaaaakiaacYcacaWFGa% WaaSqaaSqaaiaaiwdaaeaacaaI0aaaaOGaaiilaiaa-bcacaWG0bGa% aiykaiaacYcaaeaadaWgbaWcbaGaaGimaaqabaGccaWGgbGaaeiiam% aaBaaaleaacaqGZaaabeaakiaacIcadaWcbaWcbaGaaG4maaqaaiaa% isdaaaGccaGGSaGaa8hiamaaleaaleaacaaI1aaabaGaaGinaaaaki% aacYcacaWFGaWaaSqaaSqaaiaaiAdaaeaacaaI0aaaaOGaaiilaiaa% -bcacaWG0bGaaiykaiaacYcacaGGUaGaa8hiamaaBeaaleaacaaIWa% aabeaakiaadAeacaqGGaWaaSbaaSqaaiaabodaaeqaaOGaaeikamaa% leaaleaacaaI1aaabaGaaGinaaaakiaacYcacaWFGaWaaSqaaSqaai% aaiAdaaeaacaaI0aaaaOGaaiilaiaa-bcadaWcbaWcbaGaaG4naaqa% aiaaisdaaaGccaGGSaGaa8hiaiaadshacaGGPaGaaiOlaaaaaa!C1F3!\[\begin{gathered}\Psi (t) = {}_0F{\text{ }}_{\text{1}} {\text{(}}a, t{\text{), }}a \ne 0, - 1, - 2, \ldots ; \hfill \\\Psi (t) = {}_0F{\text{ }}_{\text{2}} (\tfrac{1}{3}, \tfrac{2}{3}, t) {}_0F{\text{ }}_{\text{2}} {\text{(}}\tfrac{2}{3}, \tfrac{4}{3}, t), {}_0F{\text{ }}_{\text{2}} (\tfrac{4}{3}, \tfrac{5}{3}, t); \hfill \\\Psi (t) = {}_0F{\text{ }}_{\text{3}} (\tfrac{1}{4}, \tfrac{2}{4}, \tfrac{3}{4}, t) {}_0F{\text{ }}_{\text{3}} {\text{(}}\tfrac{2}{4}, \tfrac{3}{4}, \tfrac{5}{4}, t), \hfill \\{}_0F{\text{ }}_{\text{3}} (\tfrac{3}{4}, \tfrac{5}{4}, \tfrac{6}{4}, t),. {}_0F{\text{ }}_{\text{3}} {\text{(}}\tfrac{5}{4}, \tfrac{6}{4}, \tfrac{7}{4}, t). \hfill \\\end{gathered}\]We also determine all Sheffer polynomials which are orthogonal on the unit circle. The formula for the product of polynomials of the Boas-Buck type is obtained.  相似文献   

6.
We give some properties relating the recurrence relations of orthogonal polynomials associated with any two symmetric distributions dφ1(x) and d2(x) such that dφ2(x) = (1 + kx2)d1(x). As applications of properties, recurrence relations for many interesting systems of orthogonal polynomials are obtained.  相似文献   

7.
A survey of the principal works of Academician M. P. Kravchuk and his students in the area of orthogonal polynomials of a discrete variable is presented. The value of these studies for the further development of the theory, for drawing generalization, and for the construction of different applications of this class of special functions is noted.Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 44, No. 7, pp. 880–888, July, 1992.  相似文献   

8.
9.
Zeilberger's algorithm provides a method to compute recurrence and differential equations from given hypergeometric series representations, and an adaption of Almquist and Zeilberger computers recurrence and differential equations for hyperexponential integrals. Further versions of this algorithm allow the computation of recurrence and differential equations from Rodrigues type formulas and from generating functions. In particular, these algorithms can be used to compute the differential/difference and recurrence equations for the classical continuous and discrete orthogonal polynomials from their hypergeometric representations, and from their Rodrigues representations and generating functions.In recent work, we used an explicit formula for the recurrence equation of families of classical continuous and discrete orthogonal polynomials, in terms of the coefficients of their differential/difference equations, to give an algorithm to identify the polynomial system from a given recurrence equation.In this article we extend these results by presenting a collection of algorithms with which any of the conversions between the differential/difference equation, the hypergeometric representation, and the recurrence equation is possible.The main technique is again to use explicit formulas for structural identities of the given polynomial systems.  相似文献   

10.
This is an expository paper; it aims to give an essentially self-contained overview of discrete classical polynomials from their characterizations by Hahn’s property and a Rodrigues’ formula which allows us to construct it. The integral representations of corresponding forms are given.  相似文献   

11.
12.
The aim of this paper is to define and to study orthogonal polynomials with respect to a linear functional whose moments are vectors. We show how a Clifford algebra allows us to construct such polynomials in a natural way. This new definition is motivated by the fact that there exist natural links between this theory of orthogonal polynomials and the theory of the vector valued Padé approximants in the sense of Graves-Morris and Roberts. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
Given an orthogonal polynomial system {Q n (x)} n=0 , define another polynomial system by where α n are complex numbers and t is a positive integer. We find conditions for {P n (x)} n=0 to be an orthogonal polynomial system. When t=1 and α1≠0, it turns out that {Q n (x)} n=0 must be kernel polynomials for {P n (x)} n=0 for which we study, in detail, the location of zeros and semi-classical character. Received: November 25, 1999; in final form: April 6, 2000?Published online: June 22, 2001  相似文献   

14.
At the present time, the theory of orthogonal matrix polynomials is an active area of mathematics and exhibits a promising future. However, the discrete case has been completely forgotten. In this note we introduce the notion of discrete orthogonal matrix polynomials, and show some algebraic properties. In particular, we study a matrix version of the usual Meixner polynomials.  相似文献   

15.
Among all states on the algebra of non-commutative polynomials, we characterize the ones that have monic orthogonal polynomials. The characterizations involve recursion relations, Hankel-type determinants, and a representation as a joint distribution of operators on a Fock space.

  相似文献   


16.
Following the works of Nikiforov and Uvarov a review of the hypergeometric-type difference equation for a functiony(x(s)) on a nonuniform latticex(s) is given. It is shown that the difference-derivatives ofy(x(s)) also satisfy similar equations, if and only ifx(s) is a linear,q-linear, quadratic, or aq-quadratic lattice. This characterization is then used to give a definition of classical orthogonal polynomials, in the broad sense of Hahn, and consistent with the latest definition proposed by Andrews and Askey. The rest of the paper is concerned with the details of the solutions: orthogonality, boundary conditions, moments, integral representations, etc. A classification of classical orthogonal polynomials, discrete as well as continuous, on the basis of lattice type, is also presented.  相似文献   

17.
We show that the largest zero of a birth and death process polynomial increases (decreases) with a parameter ν if the birth rates and death rates are increasing (decreasing) functions of ν. A similar result is proved for the smallest zero of a birth and death process polynomial. These results are applicable to several sets of orthogonal polynomials. We show that the largest zero of a random walk polynomial is a monotone function of a parameter ν if certain coefficients related to the birth rates and the death rates are monotone functions of ν. We prove that if xν is a positive zero of a Lommel polynomial hn,ν(x), ν > 0, then as ν increases xν will decrease but νxν will increase. Limiting cases of these results imply known facts concerning positive zeros of Bessel functions. We also establish similar results for a general class of discrete orthogonal polynomials.  相似文献   

18.
The zeros of linear combinations of orthogonal polynomials   总被引:2,自引:1,他引:1  
Let {pn} be a sequence of monic polynomials with pn of degree n, that are orthogonal with respect to a suitable Borel measure on the real line. Stieltjes showed that if m<n and x1,…,xn are the zeros of pn with x1<<xn then there are m distinct intervals f the form (xj,xj+1) each containing one zero of pm. Our main theorem proves a similar result with pm replaced by some linear combinations of p1,…,pm. The interlacing of the zeros of linear combinations of two and three adjacent orthogonal polynomials is also discussed.  相似文献   

19.
This note considers the four classes of orthogonal polynomials – Chebyshev, Hermite, Laguerre, Legendre – and investigates the Gibbs phenomenon at a jump discontinuity for the corresponding orthogonal polynomial series expansions. The perhaps unexpected thing is that the Gibbs constant that arises for each class of polynomials appears to be the same as that for Fourier series expansions. Each class of polynomials has features which are interesting numerically. Finally a plausibility argument is included showing that this phenomenon for the Gibbs constants should not have been unexpected. These findings suggest further investigations suitable for undergraduate research projects or small group investigations.  相似文献   

20.
We consider a connection that exists between orthogonal polynomials associated with positive measures on the real line and orthogonal Laurent polynomials associated with strong measures of the class S3[0,β,b]. Examples are given to illustrate the main contribution in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号