首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Homopolynuclear complexes of Cu(II) respectively Cr(III) with the glyoxylate dianion, C2H2O4 2-, have been studied in non-isothermal regime in air and nitrogen. The results of the non-isothermal analysis performed for the synthesised complexes, Cu(C2H2O4)·0.5H2O, respectively [Cr2(OH)2(C2H2O4)2(OH2)4]·2H2O, correlated with the results of the IR and TG analysis of the compounds obtained by thermal treatment from the initial complexes and the results of the GLC and XR analysis have led to the establishment of the thermal decomposition mechanisms for the two studied complexes. The decomposition mechanisms confirm the stoichiometric and structural formulae proposed for the two synthesised homopolynuclear complexes. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Polynuclear chromium ascorbate complexes were isolated and physicochemically analyzed in a comparative manner with their mononuclear analog (1). Characterization by elemental analysis, electronic, vibrational, 13C-n.m.r and mass spectroscopies, and variable temperature magnetic susceptibility studies, allowed structural proposals for the binuclear, [Cr2(μ-OH)2(H2O)(C6H7O6)3(OH)] · 4H2O (2), and trinuclear, [Cr3(μ-O)3(H2O)6(C6H7O6)3] · 4 H2O (3) complexes. The pseudo-octahedral CrIII centers were suggested to be connected through hydroxo bridges in (2) and in (3) by oxo bridges forming a hexocyclic ring. An erratum to this article is available at .  相似文献   

3.
A TG, DTG and DTA study of three polynuclear coordination compounds,containing Al(III)-Mg(II), namely (NH4)4[Al2Mg(C4O5H4)4(OH)4]?2H2O,(NH4)4[MgAl2(C4H4O6)4(OH)4]?3H2Oand (NH4)2[Al2Mg(C6O7H11)5(OH)5]?3H2O,has been reported together with the associated thermal decomposition mechanismrationalized in terms of intermediate products. As decomposition end-product,magnesium-aluminum spinel is obtained. The values of MgAl2O4mean crystallite size depend on the anionic ligand contained by the precursorcompound, varying in the order: malate (143 Å) ligand contained by theprecursor compound, varying in the order: malate (143 Å)  相似文献   

4.
The thermal decomposition behaviours of oxovanadium(IV)hydroxamate complexes of composition [VO(Q)2?n(HL1,2)n]: [VO(C9H6ON)(C6H4(OH)(CO)NHO)] (I), [VO(C6H4(OH)(CO)NHO)2] (II), [VO(C9H6ON)(C6H4(OH)(5-Cl)(CO)NHO)] (III), and [VO(C6H4(OH)(5-Cl)(CO)NHO)2] (IV) (where Q?=?C9H6NO? 8-hydroxyquinolinate ion; HL1?=?[C6H4(OH)CONHO]? salicylhydroxamate ion; HL2?=?[C6H3(OH)(5-Cl)CONHO]? 5-chlorosalicylhydroxamate ion; n?=?1 and 2), which are synthesised by the reactions of [VO(Q)2] with predetermined molar ratios of potassium salicylhydroxamate and potassium 5-chlorosalicylhydroxamate in THF?+?MeOH solvent medium, have been studied by TG and DTA techniques. Thermograms indicate that complexes (I) and (III) undergo single-step decomposition, while complexes (II) and (IV) decompose in two steps to yield VO(HL1,2) as the likely intermediate and VO2 as the ultimate product of decomposition. The formation of VO2 has been authenticated by IR and XRD studies. From the initial decomposition temperatures, the order of thermal stabilities for the complexes has been inferred as III?>?I > II?>?IV.  相似文献   

5.
The thermal decomposition of iron(III) succinate, Fe2(C4H4O4)2(OH)2 and iron(III) adipate pentahydrate, Fe2(C6H8O4)3·5 H2O, has been investigated at different temperatures for different time intervals in static air atmosphere using Mössbauer spectroscopy and nonisothermal techniques (DTG-DTA-TG). The reduction of iron(III) to iron(II) species has been observed at 533 K and 563 K in the case of iron(III) succinate and iron(III) adipate, respectively. At higher temperatures, α-Fe2O3 is formed as the final thermolysis product.  相似文献   

6.
The complexes M[La(C2O4)3]⋅xH2O (x=10 for M=Cr(III) and x=7 forM=Co(III)) have been synthesized and their thermal stability was investigated. The complexes were characterized by elemental analysis, IR, reflectance and powder X-ray diffraction (XRD) studies. Thermal investigations using TG, DTG and DTA techniques in air of chromium(III)tris(oxalato)lanthanum(III)decahydrate, Cr[La(C2O4)3]⋅10H2O showed the complex decomposition pattern in air. The compound released all the ten molecules of water within ∼170°C, followed by decomposition to a mixture of oxides and carbides of chromium and lanthanum, i.e. CrO2, Cr2O3, Cr3O4, Cr3C2, La2O3, La2C3, LaCO, LaCrOx (2<x<3) and C at ∼1000°C through the intermediate formation of several compounds of chromium and lanthanum at ∼374, ∼430 and ∼550°C. Thecobalt(III)tris(oxalato)lanthanum(III)heptahydrate, Co[La(C2O4)3]⋅7H2O becomes anhydrous around 225°C, followed by decomposition to Co3O4, La2(CO3)3 and C at ∼340°C and several other mixture species of cobalt and lanthanum at∼485°C. The end products were identified to be LaCoO3, Co3O4, La2O3, La2C3, Co3C, LaCO and C at ∼ 2>1000°C. DSC studies in nitrogen of both the compounds showed several distinct steps of decomposition along with ΔH and ΔSvalues. IR and powder XRD studies have identified some of the intermediate species. The tentative mechanisms for the decomposition in air are proposed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.

Abstract  

The heterometallic complexes [Cu(VO)2(CSN2H4)3Cl(OH)4]·H2O, [Cu2(VO)2(CSN2H4)2(C2H3O2)2·(OH)4], and [Cu2(VO)3(CSN2H4)4(C2H3O2)4(OH)4] were prepared and characterized in terms of their molecular electrical conductivity, electronic and IR spectra, and thermal behavior. A polymeric structure is proposed in which a thiourea ligand is bonded via a sulfur atom to the tetracoordinated copper(I) and via amino groups to the oxovanadium(IV) ion. The polymeric nature of the complexes is due to bridging via the OH, thiourea, and/or acetate moieties between oxovanadium(IV) coordination centers.  相似文献   

8.
This paper reports the investigation of the thermal stability of a series of new complexes with mixed ligands of the type M(dipy)(C3H3O2)2(H2O)y ((1) M: Mn, y=1; (2) M: Ni, y=2; (3) M: Cu, y=1; (4) M: Zn, y=2; dipy: 2,2’-dipyridine and C3H3O2 is acrylate anion). The thermal behaviour steps were investigated. The thermal transformations are complex processes according to TG and DTG curves including dehydration, oxidative condensation of acrylate and thermolysis processes. The final products of decomposition are the most stable metal oxides.  相似文献   

9.
Summary This paper reports the investigation of the thermal stability of a series of new complexes with mixed ligands of the type M(phen)(C3H3O2)2(H2O)y ((1) M=Mn, y=0; (2) M=Ni, y=2; (3) M=Cu, y=1; (4) M=Zn, y=2; phen=phenanthroline and C3H3O2 is acrylate anion). The thermal behaviour steps were investigated. The thermal transformations are complex processes according to TG and DTG curves including dehydration, oxidative condensation of acrylate and thermolysis processes. The final products of decomposition are the most stable metal oxides.  相似文献   

10.
A series of new complexes with mixed ligands of the type [ML(C3H3O2)2nH2O (((1) M=Mn, n=1; (2) M=Co(II), n=2; (3) M=Ni(II), n=4; (4) M=Cu(II), n=1.5; (5) M=Zn(II), n=0; L=3-amino-1,2,4-triazole and (C3H3O2)=acrylate anion) were synthesized and characterised by chemical analysis and IR data. In all complexes the 3-amino-1,2,4-triazole acts as bridge while the acrylate acts as bidentate ligand except for complex (5) where it is found as unidentate. The thermal behaviour steps were investigated in nitrogen flow. The thermal transformations are complex processes according to TG and DTG curves including dehydration, acrylate ion and 3-amino-1,2,4-triazole degradation respectively. The final products of decomposition are the most stable metal oxides, except for complex (4) that leads to metallic copper.  相似文献   

11.
The thermal behaviour of three coordination compounds, potential precursors of nickel ferrite [Fe2Ni(C4H4O5)2.5(OH)2]NO3·5H2O,[Fe2Ni(C4H8O3N2)4](NO3)8·24H2O and (NH4)[Fe2Ni(C4H4O5)3(OH)3]·3H2O has been investigated to evaluate their suitability as precursors for nickel ferrite. For a complete and reliable assignment of the thermal transformations, the isolable solid intermediates and end products were characterized by IR, X-ray diffraction and Mössbauer investigations. A decomposition scheme is proposed.  相似文献   

12.
The photoproduct of octacyanomolybdate(IV) and -tungstate(IV) with ethylenediamine and triethylenetetramine give complexes of the type K3[Mo(O2)(O)(OH)(C9H7ON)]·3C9H7ON I, K2[W(O2)(O) (C9H7ON)3] II and K3[Mo(CN)3(OH)4(C9H7ON)]·2C9H7ON·3H2O III with 8-quinolinol (oxine). The IR spectra of the complex III shows the presence ofv(CN) peaks in the range 2047–2108 cm?1 and oxine groupv(C-O) in the complex I, II and III in the range of 1100–1150 cm?1. The lower region of IR spectra shows the M=O stretching while the higher thev(N-H) andv(OH). Thermal studies show the removal of uncoordinated water at 131?C from complex III. The decomposition of complexes I and II start from 150 and 212?C respectively. Oxine and cyano molecules were removed in stages at higher temperatures. The final product of the thermal decomposition was oxide which was of polymeric nature. The kinetic parameters viz. order of reaction ‘n’ and activation energy ‘E’ were determined by different methods.  相似文献   

13.
A series of new complexes with mixed ligands of the type M(4,4’-dipy)(C3H3O2)2(H2O)y ((1) M=Mn, y=2; (2) M=Ni, y=2; 4,4’-dipy: 4,4’-dipyridyl and C3H3O2 is acrylate anion) and respectively M2(4,4’-dipy)(C3H3O2)4(H2O)y ((3) M=Cu, y=0; (4) M=Zn, y=1). The modification evidenced in IR spectra was correlated with the presence of acrylate ion as unidentate in the case of complex (1) and as bidentate for others complexes. The electronic reflectance spectra showed the dd transition for complex (1) and (2) characteristic for the octahedral surrounding while the spectrum for complex (3) have the characteristic pattern for square-pyramidal stereochemistry. The thermal behaviour steps were investigated. The thermal transformations are complex processes according to TG and DTG curves including dehydration, acrylate ion oxidative degradation and thermolysis process of aromatic amine. The final products of decomposition are the most stable metal oxides.  相似文献   

14.
Supramolecular compounds of the compositions {[Cr2(OH)2(H2O)8](C42H42N28O14)2}-(NO3)4·18.75H2O (1) and {[Cr4(OH)6(H2O)12](C48H48N32O16)3(NO3)6·55H2O (2) were synthesized from aqueous solutions of chromium(III) nitrate and the macrocyclic cavitand cucurbit[n]uril (C6n H6n N4n O2n , where n = 7 or 8, respectively). According to the X-ray diffraction study, the polynuclear chromium aqua complexes are disposed in cavities formed by the cucurbit[n]uril molecules and are linked to these molecules through hydrogen bonds between the hydroxo and aqua ligands of the polycations and the portal oxygen atoms of the macrocycles. Compound 1 is the first example of supramolecular compounds of cucurbit[7]uril with metal aqua complexes. The isolation of the supramolecular adduct with cucurbit[8]uril 2 in the single-crystalline state allows the determination of the structure of the tetranuclear chromium aqua complex having an adamantane-like structure, [Cr42-OH)6(H2O)12]6+, which has been previously unknown in the solid state.  相似文献   

15.
Results are presented on the thermal behaviour of [Fe(III)2Cu(C2C4)2(OH)4(H2O)2] precursor of copper ferrite. An investigation of the decomposition steps and intermediates was followed by a non-isothermal kinetic analysis of the processable steps.  相似文献   

16.
The crystal structures of three unusual chromium organophosphate complexes have been determined, namely, bis(μ‐butyl 2,6‐di‐tert‐butyl‐4‐methylphenyl hydrogen phosphato‐κOO′)di‐μ‐hydroxido‐bis[(butyl 2,6‐di‐tert‐butyl‐4‐methylphenyl hydrogen phosphato‐κO)(butyl 2,6‐di‐tert‐butyl‐4‐methylphenyl phosphato‐κO)chromium](CrCr) heptane disolvate or {Cr22‐OH)22‐PO2(OBu)(O‐2,6‐tBu2‐4‐MeC6H2)‐κOO′]2[PO2(OBu)(O‐2,6‐tBu2‐4‐MeC6H2)‐κO]2[HOPO(OBu)(O‐2,6‐tBu2‐4‐MeC6H2)‐κO]2}·2C7H16, [Cr2(C19H32O4P)4(C19H33O4P)2(OH)2]·2C7H16, denoted ( 1 )·2(heptane), [μ‐bis(2,6‐diisopropylphenyl) phosphato‐1κO:2κO′]bis[bis(2,6‐diisopropylphenyl) phosphato]‐1κO,2κO‐chlorido‐2κCl‐triethanol‐1κ2O,2κO‐di‐μ‐ethanolato‐1κ2O:2κ2O‐dichromium(CrCr) ethanol monosolvate or {Cr22‐OEt)22‐PO2(O‐2,6‐iPr2‐C6H3)2‐κOO′][PO2(O‐2,6‐iPr2‐C6H3)2‐κO]2Cl(EtOH)3}·EtOH, [Cr2(C2H5O)2(C24H34O4P)3Cl(C2H6O)3]·C2H6O, denoted ( 2 )·EtOH, and di‐μ‐ethanolato‐1κ2O:2κ2O‐bis{[bis(2,6‐diisopropylphenyl) hydrogen phosphato‐κO][bis(2,6‐diisopropylphenyl) phosphato‐κO]chlorido(ethanol‐κO)chromium}(CrCr) benzene disolvate or {Cr22‐OEt)2[PO2(O‐2,6‐iPr2‐C6H3)2‐κO]2[HOPO(O‐2,6‐iPr2‐C6H3)2‐κO]2Cl2(EtOH)2}·2C6H6, [Cr2(C2H5O)2(C24H34O4P)2(C24H35O4P)2Cl2(C2H6O)2]·2C6H6, denoted ( 3 )·2C6H6. Complexes ( 1 )–( 3 ) have been synthesized by an exchange reaction between the in‐situ‐generated corresponding lithium or potassium disubstituted phosphates with CrCl3(H2O)6 in ethanol. The subsequent crystallization of ( 1 ) from heptane, ( 2 ) from ethanol and ( 3 ) from an ethanol/benzene mixture allowed us to obtain crystals of ( 1 )·2(heptane), ( 2 )·EtOH and ( 3 )·2C6H6, whose structures have the monoclinic P21, orthorhombic P212121 and triclinic P space groups, respectively. All three complexes have binuclear cores with a single Cr—Cr bond, i.e. Cr2O6P2 in ( 1 ), Cr2PO4 in ( 2 ) and Cr2O2 in ( 3 ), where the Cr atoms are in distorted octahedral environments, formally having 16 ē per Cr atom. The complexes have bridging ligands μ2‐OH in ( 1 ) or μ2‐OEt in ( 2 ) and ( 3 ). The organophosphate ligands demonstrate terminal κO coordination modes in ( 1 )–( 3 ) and bridging μ2‐κOO′ coordination modes in ( 1 ) and ( 2 ). All the complexes exhibit hydrogen bonding: two intramolecular Ophos…H—Ophos interactions in ( 1 ) and ( 3 ) form two {H[PO2(OR)2]2} associates; two intramolecular Cl…H—OEt hydrogen bonds additionally stabilize the Cr2O2 core in ( 3 ); two intramolecular Ophos…H—OEt interactions and two O…H—O intermolecular hydrogen bonds with a noncoordinating ethanol molecule are observed in ( 2 )·EtOH. The presence of both basic ligands (OH? or OEt?) and acidic [H(phosphate)2]? associates at the same metal centres in ( 1 ) and ( 3 ) is rather unusual. Complexes may serve as precatalysts for ethylene polymerization under mild conditions, providing polyethylene with a small amount of short‐chain branching. The formation of a small amount of α‐olefins has been detected in this reaction.  相似文献   

17.
Oxo-centered, trinuclear, mixed-ligand complexes of chromium(III) have been synthesized by stepwise substitutions of acetate ions of [Cr3O(OOCMe)4(OOCR)3] · 3MeOH (1) and the isolated products of the type [Cr3O(OOCMe)2 (SB)(OOCR)3]PF6 · 3MeOH (2), [Cr3O(OOCMe)(SB)2(OOCR)3]PF6 · 3MeOH (3) and [Cr3O(SB)3(OOCR)3]PF6 · 3MeOH (4) [where R = C13H27 and HSB = C6H4(OH)CHNC6H4Cl] have been characterized by a full battery of complementary physico–chemical methods including spectral (infrared, electronic, FAB mass and powder XRD) studies, elemental and thermogravimetric analyses, molar conductance and magnetic susceptibility measurements. The infrared spectra suggest the bridging nature of both carboxylate and Schiff base anions along with ν asym(Cr3O) vibrations in the complexes. The trinuclear nature of the complexes has been assessed from FAB mass data. Electronic spectra and magnetic moment values were consistent with chromium(III) ion present in an octahedral environment which was supported by their powder X-ray diffraction data. Cyclic voltammetric data of complex (4) indicate a reversible oxidation wave and an irreversible reduction wave in the range − 1.2–0.6 V. The decomposition pathway of all the complexes has been discussed on the basis of thermogravimetric analysis data. Conductance data indicate the monocationic nature of the complexes and their plausible structure has been established on the basis of above physico–chemical studies.  相似文献   

18.
Summary Tris(dicarboxylate) complexes of iron(III) with oxalate, maleate, malonate and phthalate viz. K3[Fe(C2O4)3]×3H2O (1), K3[Fe(OOCCH2COO)3]×3H2O (2), K3[Fe(OOCCH=CHCOO)3]×3H2O (3), K3[Fe(OOC-1,2-(C6H4)-COO)3]×3H2O (4) have been synthesized and characterized using a combination of physicochemical techniques. The thermal decomposition behaviour of these complexes have been investigated under dynamic air atmosphere upto 800 K. All these complexes undergo a three-step dehydration/decomposition process for which the kinetic parameters have been calculated using Freeman-Carrol model as well as using different mechanistic models of the solid-state reactions. The trisoxalato and trismalonato ferrate(III) complexes undergo rapid dehydration at lower temperature below 470 K. At moderately higher temperatures (i.e. >600 and 500 K, respectively) they formed bis chelate iron(III) complexes. The trismalonato and trismaleato complexes dehydrate with almost equal ease but the latter is much less stable to decomposition and yields FeCO3 below 760 K. The cis-dicarboxylate complexes particularly with maleate(2-) and phthalate(2-) ligands are highly prone to the loss of cyclic anhydrides at moderately raised temperatures. The thermal decomposition of the tris(dicarboxylato)iron(II) to iron oxide was not observed in the investigated temperature range up to 800 K. The dehydration processes generally followed the first or second order mechanism while the third decomposition steps followed either three-dimensional diffusion or contracting volume mechanism.  相似文献   

19.
Solid complex compounds of Fe(II) and Fe(III) ions with rutin were obtained. On the basis of the elementary analysis and thermogravimetric investigation, the following composition of the compounds was determined: (1) FeOH(C27H29O16)·5H2O, (2) Fe2OH(C27H27O16)·9H2O, (3) Fe(OH)2(C27H29O16)·8H2O, (4) [Fe6(OH)2(4H2O)(C15H7O12)SO4]·10H2O. The coordination site in a rutin molecule was established on the basis of spectroscopic data (UV–Vis and IR). It was supposed that rutin was bound to the iron ions via 4C=O and 5C—oxygen in the case of (1) and (3). Groups 5C–OH and 4C=O as well as 3′C–OH and 4′C–OH of the ligand participate in binding metals ions in the case of (2). At an excess of iron(III) ions with regard to rutin under the synthesis conditions of (4), a side reaction of ligand oxidation occurs. In this compound, the ligands’ role plays a quinone which arose after rutin oxidation and the substitution of Fe(II) and Fe(III) ions takes place in 4C=O, 5C–OH as well as 4′C–OH, 3′C–OH ligands groups. The magnetic measurements indicated that (1) and (3) are high-spin complexes.  相似文献   

20.
This paper reports the investigation of the thermal stability of a series of new complexes with mixed ligands of the type [M(en)(C3H3O2)2nH2O ((1) M=Ni, n=2; (2) M=Cu, n=0; (3) M=Zn, n=2; en=ethylenediamine and (C3H3O2)=acrylate anion). The thermal behaviour steps were investigated in a nitrogen flow. The thermal transformations are complex processes according to TG and DTA curves including dehydration, ethylenediamine elimination as well as acrylate thermolysis. The final products of decomposition are the most stable metal oxides except for complex (2) that generates metallic copper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号