首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We propose and analyze an a posteriori error estimator for a partial differential equation (PDE)-constrained optimization problem involving a nondifferentiable cost functional, fractional diffusion, and control-constraints. We realize fractional diffusion as the Dirichlet-to-Neumann map for a nonuniformly PDE and propose an equivalent optimal control problem with a local state equation. For such an equivalent problem, we design an a posteriori error estimator which can be defined as the sum of four contributions: two contributions related to the approximation of the state and adjoint equations and two contributions that account for the discretization of the control variable and its associated subgradient. The contributions related to the discretization of the state and adjoint equations rely on anisotropic error estimators in weighted Sobolev spaces. We prove that the proposed a posteriori error estimator is locally efficient and, under suitable assumptions, reliable. We design an adaptive scheme that yields, for the examples that we perform, optimal experimental rates of convergence.  相似文献   

2.
《Optimization》2012,61(10):1819-1836
ABSTRACT

In this paper, we study a distributed optimal control problem of a coupled nonlinear system of reaction–diffusion equations. The system consists of three partial differential equations to represent cancer cell density, matrix-degrading enzymes concentration and oxygen concentration, and an ordinary differential equation to describe the extracellular matrix concentration. Our aim is to minimize the growth of cancer cells by controlling the production of matrix-degrading enzymes. First, we prove the existence and uniqueness of solutions of the direct problem. Then, we prove the existence of an optimal control. Finally, we derive the first-order optimality conditions and prove the existence of weak solutions of the adjoint problem.  相似文献   

3.
Thomas End 《PAMM》2011,11(1):793-794
We state an optimal control problem of the coupled quasi-stationary radiative heat equations consisting of the radiative transfer equation and the instationary heat transfer equation that model radiative-conductive heat transfer. We give an existence and uniqueness result for the state equations and the adjoint equations of the quasi-stationary radiative heat transfer system. For the optimal control problem the existence of a minimizer is proven. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
魏金侠  单锐  刘文  靳飞 《应用数学》2012,25(3):691-696
为了解决二维非线性Volterra积分微分方程的求解问题,本文给出微分变换法.利用该方法将方程中的微分部分和积分部分进行变换,这样简化了原方程,进而得到非线性代数方程组,从而将原问题转换为求解非线性代数方程组的解,使得计算更简便.文中最后数值算例说明了该方法的可行性和有效性.  相似文献   

5.
The singularly perturbed boundary value problem of scalar integro-differential equations has been studied extensively by the differential inequality method . However, it does not seem possible to carry this method over to a corresponding nonlinear vector integro-differential equation. Therefore , for n-dimensional vector integro-differential equations the problem has not been solved fully. Here, we study this nonlinear vector problem and obtain some results. The approach in this paper is to transform the appropriate integro-differential equations into a canonical or diagonalized system of two first-order equations.  相似文献   

6.
We consider the problem on the unique solvability of the inverse problem for a nonlinear partial Benney–Luke type integro-differential equation of the fourth order with a degenerate kernel. We modify the degenerate kernelmethod which has been designed for Fredholm integral equations of the second kind to apply to the case of the above-mentioned equation. We exploit the Fouriermethod of separation of variables. By means of designations, the Benney–Luke type integro-differential equation is reduced to a system of algebraic equations. Using an additional condition, we obtain the countable system of nonlinear integral equations with respect to the main unknown function. We employ the method of successive approximations together with the contraction mapping principle. Finally, the restore function is defined.  相似文献   

7.
Fractional calculus is an extension of derivatives and integrals to non-integer orders and has been widely used to model scientific and engineering problems. In this paper, we describe the fractional derivative in the Caputo sense and give the second kind Chebyshev wavelet (SCW) operational matrix of fractional integration. Then based on above results we propose the SCW operational matrix method to solve a kind of nonlinear fractional-order Volterra integro-differential equations. The main characteristic of this approach is that it reduces the integro-differential equations into a nonlinear system of algebraic equations. Thus, it can simplify the problem of fractional order equation solving. The obtained numerical results indicate that the proposed method is efficient and accurate for this kind equations.  相似文献   

8.
研究带非局部积分项的二阶线性常微分方程及其在金融保险上的应用.首先讨论带非局部积分项的二阶常微分方程解的存在唯一性,通过变量代换和累次积分交换积分顺序将非局部项简化,将方程化为方程组,然后完成了对方程组解的存在唯一性的证明.接着分析了带非局部项的二阶常微分方程解的结构,给出了方程解的形式.最后通过推导,指出带非局部项的线性常微分方程在保险公司的破产概率研究中的应用,重点放在二阶方程的应用上,并且在某一特定情况下,举出了一个可以给出解析解的例子.  相似文献   

9.
借助于锥理论,本文讨论Banach空间中非线性脉冲积分微分方程的解.给出一阶脉冲微分方程存在唯一正解的条件及混合型脉冲积分微分方程至少具有两解的条件.  相似文献   

10.
研究了由Teugels鞅和与之独立的多维Brown运动共同驱动的正倒向随机控制系统的最优控制问题. 这里Teugels鞅是一列与L\'{e}vy 过程相关的两两强正交的正态鞅 (见Nualart, Schoutens 在2000年的结果). 在允许控制值域为一非空凸闭集假设下, 采用凸变分法和对偶技术获得了最优控制存在所满足的充分和必要条件. 作为应用, 系统研究了线性正倒向随机系统的二次最优控制问题(简记为FBLQ问题), 通过相应的随机哈密顿系统对最优控制 进行了对偶刻画. 这里的随机哈密顿系统是由Teugels鞅和多维Brown运动共同驱动的线性正倒向随机微分方程, 其由状态方程、伴随方程和最优控制的对偶表示共同来构成.  相似文献   

11.
This paper considers the numerical solution of optimal control problems based on ODEs. We assume that an explicit Runge-Kutta method is applied to integrate the state equation in the context of a recursive discretization approach. To compute the gradient of the cost function, one may employ Automatic Differentiation (AD). This paper presents the integration schemes that are automatically generated when differentiating the discretization of the state equation using AD. We show that they can be seen as discretization methods for the sensitivity and adjoint differential equation of the underlying control problem. Furthermore, we prove that the convergence rate of the scheme automatically derived for the sensitivity equation coincides with the convergence rate of the integration scheme for the state equation. Under mild additional assumptions on the coefficients of the integration scheme for the state equation, we show a similar result for the scheme automatically derived for the adjoint equation. Numerical results illustrate the presented theoretical results.  相似文献   

12.
In this paper, we study a nonlinear first-order singularly perturbed Volterra integro-differential equation with delay. This equation is discretized by the backward Euler for differential part and the composite numerical quadrature formula for integral part for which both an a priori and an a posteriori error analysis in the maximum norm are derived. Based on the a priori error bound and mesh equidistribution principle, we prove that there exists a mesh gives optimal first order convergence which is robust with respect to the perturbation parameter. The a posteriori error bound is used to choose a suitable monitor function and design a corresponding adaptive grid generation algorithm. Furthermore, we extend our presented adaptive grid algorithm to a class of second-order nonlinear singularly perturbed delay differential equations. Numerical results are provided to demonstrate the effectiveness of our presented monitor function. Meanwhile, it is shown that the standard arc-length monitor function is unsuitable for this type of singularly perturbed delay differential equations with a turning point.  相似文献   

13.
In this paper, we formulate and study a general optimal control problem governed by nonlinear operator equations described by unbounded self-adjoint operators in Hilbert spaces. This problem extends various particular control models studied in the literature, while it has not been considered before in such a generality. We develop an efficient way to construct a finite-dimensional subspace extension of the given self-adjoint operator that allows us to design the corresponding adjoint system and finally derive an appropriate counterpart of the Pontryagin Maximum Principle for the constrained optimal control problem under consideration by using the obtained increment formula for the cost functional and needle type variations of optimal controls.  相似文献   

14.
This paper considers an infinite-time optimal damping control problem for a class of nonlinear systems with sinusoidal disturbances. A successive approximation approach (SAA) is applied to design feedforward and feedback optimal controllers. By using the SAA, the original optimal control problem is transformed into a sequence of nonhomogeneous linear two-point boundary value (TPBV) problems. The existence and uniqueness of the optimal control law are proved. The optimal control law is derived from a Riccati equation, matrix equations and an adjoint vector sequence, which consists of accurate linear feedforward and feedback terms and a nonlinear compensation term. And the nonlinear compensation term is the limit of the adjoint vector sequence. By using a finite term of the adjoint vector sequence, we can get an approximate optimal control law. A numerical example shows that the algorithm is effective and robust with respect to sinusoidal disturbances.  相似文献   

15.
The dynamic behavior of a continuously stirred tank reactor (CSTR) with an exothermic reversible reaction is studied. The balance equations of the reaction lead to a set of highly nonlinear differential equations. For system analysis and control synthesis the dynamic equation are rewritten as state space model. From this nonlinear model a bilinear model is derived. Then, two optimization problems are solved: The time optimal problem for the nonlinear model and the quadratic problem for the bilinear model. In case of the finite time bilinear-quadratic problem a modified Riccati approximation algorithm for a stabilizing feedback controller is presented.  相似文献   

16.
We consider an optimal control problem for systems governed by ordinary differential equations with control constraints. The state equation is discretized by the explicit fourth order Runge-Kutta scheme and the controls are approximated by discontinuous piecewise affine ones. We then propose an approximate gradient projection method that generates sequences of discrete controls and progressively refines the discretization during the iterations. Instead of using the exact discrete directional derivative, which is difficult to calculate, we use an approximate derivative of the cost functional defined by discretizing the continuous adjoint equation by the same Runge-Kutta scheme and the integral involved by Simpson's integration rule, both involving intermediate approximations. The main result is that accumulation points, if they exist, of sequences constructed by this method satisfy the weak necessary conditions for optimality for the continuous problem. Finally, numerical examples are given.  相似文献   

17.
Abstract

In this article, we derive the existence and uniqueness of the solution for a class of generalized reflected backward stochastic differential equation involving the integral with respect to a continuous process, which is the local time of the diffusion on the boundary, in using the penalization method. We also give a characterization of the solution as the value function of an optimal stopping time problem. Then we give a probabilistic formula for the viscosity solution of an obstacle problem for PDEs with a nonlinear Neumann boundary condition.  相似文献   

18.
We study a stochastic optimal control problem for a delayed Markov regime-switching jump-diffusion model. We establish necessary and sufficient maximum principles under full and partial information for such a system. We prove the existence–uniqueness theorem for the adjoint equations, which are represented by an anticipated backward stochastic differential equation with jumps and regimes. We illustrate our results by a problem of optimal consumption problem from a cash flow with delay and regimes.  相似文献   

19.
We study the linear quadratic optimal stochastic control problem which is jointly driven by Brownian motion and L\'{e}vy processes. We prove that the new affine stochastic differential adjoint equation exists an inverse process by applying the profound section theorem. Applying for the Bellman's principle of quasilinearization and a monotone iterative convergence method, we prove the existence and uniqueness of the solution of the backward Riccati differential equation. Finally, we prove that the optimal feedback control exists, and the value function is composed of the initial value of the solution of the related backward Riccati differential equation and the related adjoint equation.  相似文献   

20.
??We study the linear quadratic optimal stochastic control problem which is jointly driven by Brownian motion and L\'{e}vy processes. We prove that the new affine stochastic differential adjoint equation exists an inverse process by applying the profound section theorem. Applying for the Bellman's principle of quasilinearization and a monotone iterative convergence method, we prove the existence and uniqueness of the solution of the backward Riccati differential equation. Finally, we prove that the optimal feedback control exists, and the value function is composed of the initial value of the solution of the related backward Riccati differential equation and the related adjoint equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号